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Abstract. Recently, a number of reversible functional programming
languages have been proposed. Common to several of these is the as-
sumption of totality, a property that is not necessarily desirable, and
certainly not required in order to guarantee reversibility. In a categorical
setting, however, faithfully capturing partiality requires handling it as
additional structure. Recently, Giles studied inverse categories as a model
of partial reversible (functional) programming. In this paper, we show
how additionally assuming the existence of countable joins on such inverse
categories leads to a number of properties that are desirable when mod-
elling reversible functional programming, notably morphism schemes for
reversible recursion, a †-trace, and algebraic ω-compactness. This gives a
categorical account of reversible recursion, and, for the latter, provides
an answer to the problem posed by Giles regarding the formulation of
recursive data types at the inverse category level.

1 Introduction

Reversible computing, that is, the study of computations that exhibit both
forward and backward determinism, originally grew out of the thermodynamics of
computation. Landauer’s principle states that computations performed by some
physical system (thermodynamically) dissipate heat when information is erased,
but that no dissipation is entailed by information-preserving computations [28].
This has motivated a long study of diverse reversible computation models, such as
logic circuits [15], Turing machines [4, 6], and many forms of restricted automata
models [27, 31]. Reversibility concepts are important in quantum computing,
but are increasingly seen to be of interest in other areas as well, including
high-performance computing [33], process calculi [13], and even robotics [34,35].

In this paper we concern ourselves with the categorical underpinnings of
functional reversible programming languages. At the programming language level,
reversible languages exhibit interesting program properties, such as easy program
inversion [40]. Now, most reversible languages are stateful, giving them a fairly
straightforward semantics interpretation. While functional programs are usually
easier to reason about at the meta-level, they do not have the concept of state
that imperative languages do, making their semantics interesting objects of study.
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Further, many reversible functional programming languages (such as The-
seus [25] and the Π-family of combinator calculi [7]) come equipped with a tacit
assumption of totality, a property that is neither required [4] nor necessarily
desirable as far as guaranteeing reversibility is concerned. Shedding ourselves of
the “tyranny of totality,” however, requires us to handle partiality explicitly as
additional categorical structure.

One approach which does precisely that is inverse categories, as studied by
Cockett & Lack [9] as a specialization of restriction categories, which have recently
been suggested and developed by Giles [16] as models of reversible (functional)
programming. In this paper, we will argue that assuming ever slightly more
structure on these inverse categories, namely the presence of countable joins of
parallel morphisms [17], gives rise to a number of additional properties useful
for modelling reversible functional programming, notably two different notions
of reversible recursion, and an account of recursive data types (via algebraic ω-
compactness with respect to structure-preserving functors), which are not present
in the general case. This is done by adopting two different, but complementary,
views on inverse categories with countable joins as enriched categories – as CPO-
categories, and as (specifically ΣMon-enriched) strong unique decomposition
categories [18,23].

Overview. The necessary background on restriction and inverse categories is
presented in Sec. 2. In Sec. 3 we show that inverse categories with countable joins
are CPO-enriched, which allows us to demonstrate the existence of (reversible!)
fixed points of both morphism schemes and structure-preserving functors. In
Sec. 4 we show that inverse categories with countable joins and a join-preserving
disjointness tensor are unique decomposition categories equipped with a uniform
†-trace. Sec. 5 gives conclusions and directions for future work.

2 Background

This section gives an introduction to restriction and inverse categories (with
joins), dagger categories, and categories of partial maps as they will be used in
the remainder of this text. Unless otherwise stated, the material described in this
section can be found in standard texts on restriction and inverse category theory
(e.g., Cockett & Lack [9–11], Giles [16], Guo [17]).

We begin by recalling the definition of restriction structures and restriction
categories.

Definition 1 (Cockett & Lack, 2002). A restriction structure on a category
consists of an operator (·) on morphisms mapping each morphism f : A→ B to
a morphism f : A→ A (the restriction idempotent of f) such that

(i) f ◦ f = f for all morphisms f : A→ B,
(ii) f ◦ g = g ◦ f whenever dom(f) = dom(g),

(iii) f ◦ g = f ◦ g whenever dom(f) = dom(g), and
(iv) h ◦ f = h ◦ f ◦ f whenever cod(f) = dom(h).

A category with a restriction structure is called a restriction category.
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As a trivial example, any category can be equipped with a restriction structure
given by setting f = 1A for every morphism f : A→ B. However, there are also
many useful and nontrivial examples of restriction categories (see, e.g., Cockett
& Lack [9, Sec. 2.1.3]), the canonical one being the category Pfn of sets and
partial functions. In this category, the restriction idempotent f : A → A for a
partial function f : A→ B is given by the partial identity function

f(x) =

{
x if f is defined at x,
undefined otherwise.

Since we take restrictions as additional structure, we naturally want a notion of
functors that preserve this structure.

Definition 2. A functor F : C→ D between restriction categories C and D is
a restriction functor if F (f) = F (f) for all morphisms f of C.

A morphism f : A → B of a restriction category is said to be total if f = 1A.
Given a restriction category C, we can form the category Total( C), consisting of
all objects and only the total morphisms of C, which embeds in C via a faithful
restriction functor. Further, a restriction category in which every restriction
idempotent splits is called a split restriction category, and, by way of the Karoubi
envelope, every restriction category C can be embedded in a split restriction
category Split( C) via a fully faithful restriction functor. Restriction categories
with restriction functors form a category, rCat.

A useful feature of restriction categories, and one we will exploit throughout
this article, is that hom-sets can be equipped with a partial order (often called
the natural partial order), defined as follows:

Proposition 1. In a restriction category C, every hom-set Hom C(A,B) can be
equipped with the structure of a partial order where we let f ≤ g iff g ◦ f = f .
Further, every restriction functor F is locally monotone on this order, in the
sense that f ≤ g implies F (f) ≤ F (g).

In Pfn, this corresponds to the usual partial order on partial functions: For
f, g : A→ B, f ≤ g if, for all x ∈ A, f is defined at x implies that g is defined at
x and f(x) = g(x).

A natural question to ask is when this partial order has a least element: A
sufficient condition for this is when the restriction category has a restriction zero.

Definition 3. A restriction category C has a restriction zero object 0 iff for
all objects A and B, there exists a unique morphism 0A,B : A→ B that factors
through 0 and satisfies 0A,A = 0A,A.

If such a restriction zero object exists, it is unique up to (total) isomorphism.
When a given restriction category has such a restriction zero, the zero map
0A,B : A→ B is precisely the least element of Hom C(A,B).

Moving on to inverse categories, in order to define these we first need the
notion of a partial isomorphism:
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Definition 4. In a restriction category C, we say that a morphism f : A→ B
is a partial isomorphism if there exists a unique morphism f◦ : B → A of C (the
partial inverse of f) such that f◦ ◦ f = f and f ◦ f◦ = f◦.

Definition 5. A restriction category C is said to be an inverse category if all
morphisms of C are partial isomorphisms.

In this manner, if we accept an intuition of restriction categories as “categories
with partiality,” inverse categories are “groupoids with partiality” – and, indeed,
the category PInj of sets and partial injective functions is the canonical example
of an inverse category. In fact, the Wagner-Preston representation theorem (see,
e.g., Lawson [29]) for inverse monoids can be extended to show that every locally
small inverse category can be faithfully embedded in PInj (see Heunen [21] for
the general case, or Cockett & Lack [9] for the special case of small categories).

The analogy with groupoids goes even further; similar to how we can construct
a groupoid Core( C) by taking only the isomorphisms of C, every restriction
category C has a subcategory Inv( C) that is an inverse category, and has as
morphisms only the partial isomorphisms of C. Inverse categories with restriction
functors form a category, invCat.

More generally, inverse categories are dagger categories (sometimes also called
categories with involution):

Definition 6. A category C is said to be a dagger category if it is equipped with
a contravariant endofunctor (−)† : C→ Cop such that 1†A = 1A for all objects A,
and f†† = f for all morphisms f .

Proposition 2. Every inverse category C is a dagger category with the dagger
functor given by A† = A on objects, and f† = f◦ on morphisms.

As is conventional, we will call f† the adjoint of f , and say that f is self-adjoint
if f = f†, and unitary if f† = f−1. In inverse categories, unitary morphisms thus
correspond precisely to (total) isomorphisms. For the remainder of this text, we
will use this induced dagger-structure when refering to the partial inverse of a
morphism (and write, e.g., f† rather than f◦).

A useful feature of this definition of inverse categories is that we do not need
an additional notion of an “inverse functor” as a functor that preserves partial
inverses; restriction functors suffice.

Definition 7. A functor F : C → D between dagger categories is a dagger
preserving if F (f)† = F (f†) for all morphisms f of C.

Proposition 3. Every restriction functor F : C→ D between inverse categories
C and D is dagger preserving.

That this holds can be seen from the fact that the property of being a partial
isomorphism is defined purely in terms of composition and restriction idempotents,
both of which are preserved by restriction functors.
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2.1 Joins and compatibility

Given that hom-sets of restriction (and, by extension, inverse) categories are
partially ordered, one may wonder when this partial order has joins. It turns
out, however, that it does not in the general case, and that only very simple
restriction categories have joins for arbitrary parallel morphisms. However, we
can define a meaningful notion of joins for parallel morphisms if this operation
is not required to be total, but only be defined for compatible morphisms. For
restriction categories, this compatibility relation is defined as follows:

Definition 8. Parallel morphisms f, g : A→ B of a restriction category C are
said to be restriction compatible if g◦f = f ◦g; if this is the case, we write f ^ g.
By extension, a set S ⊆ Hom C(A,B) is restriction compatible if all morphisms
of S are pairwise restriction compatible.

This compatibility relation can be extended to apply to inverse categories by
requiring that morphisms be compatible in both directions:

Definition 9. Parallel morphisms f, g : A → B of an inverse category C are
said to be inverse compatible if f ^ g and f† ^ g†; if this is the case, we write
f � g . A set S ⊆ Hom C(A,B) is inverse compatible if all morphisms of S are
pairwise inverse compatible.

The familiar reader will notice that this definition differs in its statement from
Guo’s [17, p. 98], who defined f � g in an inverse category C if f ^ g holds in both
C and Cop (relying on the observation that inverse categories are simultaneously
restriction categories and corestriction categories). To avoid working explicitly
with corestriction categories, however, we will use this equivalent definition
instead.

We define restriction categories with (countable) joins as follows:

Definition 10 (Guo, 2012). A restriction category C is a (countable) join
restriction category if it has a restriction zero object, and satisfies that for all
(countable) restriction compatible subsets S of all hom sets Hom C(A,B), there
exists a morphism

∨
s∈S s such that

(i) s ≤
∨

s∈S s for all s ∈ S, and s ≤ t for all s ∈ S implies
∨

s∈S s ≤ t;
(ii)

∨
s∈S s =

∨
s∈S s;

(iii) f ◦
(∨

s∈S s
)

=
∨

s∈S(f ◦ s) for all f : B → X; and

(iv)
(∨

s∈S s
)
◦ g =

∨
s∈S(s ◦ g) for all g : Y → A.

In addition, we say that a restriction functor that preserves all thus constructed
joins is a join restriction functor.

As a concrete example, Pfn has joins of all restriction compatible sets; here,
f ^ g iff whenever f and g are both defined at some point x, f(x) = g(x), and
the join of a set of restriction compatible partial functions F is given by∨

f∈F

f

 (x) =

{
f ′(x) if there exists an f ′ ∈ F such that f ′ is defined at x,
undefined otherwise.
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Notice that the compatibility relation ensures precisely that the result is a partial
function.

This, finally, allows us to define join inverse categories by narrowing the
definition above to only require the existence of joins of inverse compatible (sets
of) morphisms:

Definition 11. An inverse category C is a (countable) join inverse category if
it has a restriction zero object, and Definition 10 is satisfied for all (countable)
inverse compatible subsets S of all Hom C(A,B).

Analogously to Pfn, the category PInj is a join inverse category with joins
given precisely as in Pfn, since the additional requirement that f† ^ g† ensures
that the resulting partial function is injective.

2.2 Categories of partial maps

Categories of partial maps provide a synthetic approach to partiality in a cate-
gorical setting, and was first introduced by Robinson and Rosolini [32] in 1988.
To form a category of partial maps, we consider a stable system of monics: In
a category C, a collection M of monics of C is said to be a stable system of
monics if it contains all isomorphisms of C and is closed under composition and
pullbacks (in the sense that the pullback m′ of an m : X → B in M along any
f : A→ B exists and m′ ∈ M). Given such a stable system of monics M in a
category C, we can form the category of partial maps as follows:

Proposition 4. Given a category C and a stable system of monics M of C,
we form the category of partial maps Par( C,M) by choosing the objects to be
the objects of C, and placing a morphism (m, f) : A→ B for every pair (m, f)
where m : A′ → A ∈M and f : A′ → B is a morphism of C, as in

A′

A B

m f

factored out by the equivalence relation · ∼ · in which (m, f) ∼ (m′, f ′) if there
exists an isomorphism α : A′ → A′′ such that m′ ◦ α = m and f ′ ◦ α = f .
Composition of morphisms (m, f) : A → B and (m′, g) : B → C is given by
(m ◦m′′, g ◦ f ′) : A→ C where m′′ and f ′ arise from the pullback

A′

A′′

A B

B′

C

m

m′

m′′

f

g

f ′

where m′′ ◦m ∈M precisely by M closed under composition and pullbacks.

Categories of partial maps are prime examples of restriction categories; in
fact, of split restriction categories. Further, it can be shown that every restriction
category C embeds fully and faithfully and in a restriction preserving manner
into a category of partial maps [9].
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3 As CPO-categories

In the present section, we will show that inverse categories with countable
joins are intrinsically CPO-enriched. This observation leads to two properties
that are highly useful for modelling reversible functional programming, namely
the existence of fixed points for both morphism schemes for recursion (that is,
continuous endomorphisms on hom-objects) and for locally continuous functors.
The former can be applied to model reversible recursive functions, and the latter
to model recursive data types [3]. Further, we will show that the partial inverse
of the fixed point of a morphism scheme for recursion can be computed as the
fixed point of an adjoint morphism scheme, giving a style of recursion similar to
the reversible functional programming language rfun [39].

Recall that a category C is CPO-enriched (or simply a CPO-category) if
all Hom C(A,B) are pointed ω-complete partial orders (i.e., they have a least
element and satisfy that each ω-chain has a supremum), and composition is
monotone, continuous and strict. To begin, we will need the lemma below.

Lemma 1. Let C be an inverse category and f, g : A→ B be parallel morphisms
of C. If f ≤ g then f � g.

This lemma allows us to show CPO-enrichment of join inverse categories:

Theorem 1. Every inverse category C with countable joins is CPO-enriched.

Proof. Let A,B be objects of C, and let {fi}i∈ω be an ω-chain in Hom C(A,B)
with respect to the canonical partial ordering. By Lemma 1, all fi and fj for
i, j ∈ ω of this chain are inverse compatible, so the set F = {fi | i ∈ ω} is an
inverse compatible subset of Hom C(A,B). But then we can form the supremum
of {fi}i∈ω by

sup{fi}i∈ω =
∨
f∈F

f

which is the supremum of this chain directly by definition of the join.
Let f, g : A→ B and F = {fi | i ∈ ω}. Monotony of compositions holds in all

restriction categories, not just inverse categories with countable joins: Supposing
f ≤ g then g ◦ f = f , and for h : B → X,

h ◦ g ◦ h ◦ f = h ◦ g ◦ h ◦ g ◦ f = h ◦ g ◦ h ◦ g ◦ f = h ◦ g ◦ f = h ◦ f

so h ◦ f ≤ h ◦ g in Hom C(A,X); the argument is analogous for postcomposition.
That composition is continuous follows directly by definition of joins, as we have

h ◦ sup{fi}i∈ω = h ◦
∨
f∈F

f =
∨
f∈F

(h ◦ f) = sup{h ◦ fi}i∈ω

for all h : B → X, and analogously for postcomposition. That composition is
strict follows by the fact that the zero map 0A,B : A→ B is least in Hom C(A,B),
and that g ◦ 0A,B = 0A,X for all g : B → X by the universal mapping property
of the zero object, and likewise for postcomposition. ut
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Recall that a functor F : C→ D between CPO-categories is locally continuous
iff each FA,B : Hom C(A,B) → HomD(FA,FB) is monotone and continuous.
Note that since all restriction functors preserve the partial order on hom-sets,
and since suprema are defined in terms of joins, join restriction functors are in
particular locally continuous.

3.1 Reversible fixed points of morphism schemes

In the following, let C be an inverse category with countable joins. We will
use the term morphism scheme to refer to a monotone and continuous function
f : Hom C(A,B) → Hom C(X,Y ) – note that such schemes are morphisms of
CPO and not of the inverse category C, so they are specifically not required to
have inverses. Enrichment in CPO then has the following immediate corollary
by Kleene’s fixed point theorem:

Corollary 1. Every morphism scheme of the form Hom C(A,B)
f−→ Hom C(A,B)

has a least fixed point fix f : A→ B in C.

Proof. Define fix f = sup{fn(0A,B)}; that this is the least fixed point follows by
Kleene’s fixed point theorem, as 0A,B is least in Hom C(A,B). ut

Morphism schemes on their own are useful for modelling parametrized re-
versible functions, i.e., functions that take other functions given at compile-time
as parameters to produce new, first-order reversible functions. Since higher-order
reversible functional programming is yet to be well-understood, parametrized
functions (as implemented in, e.g., Theseus [25]) allow for a higher degree of
abstraction and code reuse, as we know it from higher-order functional irreversible
programming. With this in mind, recursive reversible functions can be seen as
least fixed points of self-parametrized functions.

Given that we can thus model reversible recursive functions via least fixed
points of morphism schemes, a prudent question to ask is if the inverse of a least
fixed point can be computed as the least fixed point of another morphism scheme.
We will answer this in the affirmative, but to do this, we need to show that the
induced dagger functor is locally continuous.

Lemma 2. The canonical dagger functor † : Cop → C is locally continuous.

Proof. Let f, g : A→ B. For monotony, suppose f ≤ g, i.e., g ◦ f = f . Then

g† ◦ f† = g† ◦ f ◦ f† = g† ◦ g ◦ f ◦ f† = g ◦ f ◦ f† = g ◦ f ◦ f†

= f ◦ f† = f† ◦ f ◦ f† = f† ◦ f† = f†

so f† ≤ g† as well, as desired. For continuity, let {fi}i∈ω be an ω-chain in
Hom C(A,B), and let F = {fi | i ∈ ω} be the corresponding set for this chain.
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Since f ≤
∨

f∈F f for each f ∈ F by Def. 11, we have f† ≤
(∨

f∈F f
)†

for all

f ∈ F by monotony of †, and so

sup{f†i }i∈ω =
∨
f∈F

f† ≤

∨
f∈F

f

† = sup{fi}†i∈ω

by Def. 11. In the other direction, we have f† ≤
∨

f∈F f
† for all f ∈ F by

Def. 11, so by monotony of †, f = f†† ≤
(∨

f∈F f
†
)†

for all f ∈ F . But then∨
f∈F f ≤

(∨
f∈F f

†
)†

by Def. 11, and so by monotony of †, we finally get

sup{fi}†i∈ω =

∨
f∈F

f

† ≤

∨
f∈F

f†

†† =
∨
f∈F

f† = sup{f†i }i∈ω

as desired. ut

With this lemma, we are able to show that the inverse of a least fixed point
of a morphism scheme can be computed as the least fixed point of an adjoint
morphism scheme:

Theorem 2. Every morphism scheme of the form Hom C(A,B)
f−→ Hom C(A,B)

has an adjoint morphism scheme Hom C(B,A)
f‡−→ Hom C(B,A) such that (fix f)† =

fix f‡.

Proof. Let ιA,B : Hom C(A,B) → Hom C(B,A) denote the family of functions
defined by ιA,B(f) = f†; each of these are monotone and continuous by Lemma 2,
and an isomorphism (with inverse ιB,A) by f†† = f . Given a morphism scheme
f : Hom C(A,B)→ Hom C(A,B), we define f‡ = ιA,B ◦f ◦ιB,A – this is monotone
and continuous since it is a (monotone and continuous) composition of monotone
and continuous functions. But since

fn‡ = (ιA,B ◦ f ◦ ιB,A)n = ιA,B ◦ fn ◦ ιB,A

by ιB,A an isomorphism with inverse ιA,B , and since 0†A,B = 0B,A by the universal
mapping property of the zero object, we get

fix f‡ = sup{fn‡ (0B,A)} = sup{(ιA,B ◦ fn ◦ ιB,A)(0B,A)} = sup{fn(0†B,A)†}

= sup{fn(0A,B)†} = sup{fn(0A,B)}† = (fix f)†

as desired. ut

In modelling recursion in reversible functional programming, this theorem
states precisely that the partial inverse of a recursive reversible functions is,
itself, a recursive reversible function, and that it can be obtained by inverting
the function body and replacing recursive calls with recursive calls to the thus
constructed inverse: Coincidentally, this is precisely the inverse semantics of
recursive reversible functions in rfun [39].
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3.2 Algebraic ω-compactness for free!

A pleasant property of CPO-categories is that algebraic ω-compactness – the
property that every locally continuous functor has a canonical fixed point – is
relatively easy to check for, thanks to the fixed point theorem due to Adámek [3]
and Barr [5]:

Theorem 3 (Adámek & Barr). Let C be a CPO-category with an initial
object. If C has colimits of ω-sequences of embeddings, then C is algebraically
ω-compact over CPO.

Canonical fixed points of functors are of particular interest in modelling functional
programming, since they can be used to provide interpretations for recursive
data types. In the following, we will couple this theorem with a join-completion
theorem for restriction categories to show that every inverse category can be
faithfully embedded in an algebraically ω-compact inverse category with joins.
That this succeeds rests on the following lemmas:

Lemma 3. If an inverse category C embeds faithfully in a restriction category
D, it also embeds faithfully in Inv(D).

Proof. We notice that Inv : rCat → invCat is right adjoint to the forgetful
functor U : invCat→ rCat, with each component of the counit ε : U ◦ Inv →
1rCat given by the faithful inclusion functor εC : U(Inv( C)) → C (that this is
an adjunction follows by an argument entirely analogous to Core : Cat→ Grpd
being right adjoint to U : Grpd→ Cat). That faithful restriction functors are
preserved follows readily since restriction functors preserve partial isomorphisms,
and every restriction functor out of an inverse category factors through Inv-
inclusion by this adjunction. ut

Lemma 4. The functor Inv : rCat→ invCat takes join restriction categories
to join inverse categories (and preserves join restriction functors).

The latter of these lemmas was shown by Guo [17, Lemma 3.1.27]. As for
the completion theorem, in order to ease presentation we make the following
notational shorthand.

Convention 12. For a restriction category C, let C denote the category of
pre-sheaves SetTotal(Split(C))op .

Note that C is cocomplete and all colimits are stable under pullback (since
colimits in C are constructed object-wise in Set). This is used in the completion
theorem for join restriction categories, due to Cockett and Guo [8,17].

Theorem 4 (Cockett & Guo). Every restriction category C can be faithfully

embedded in a join restriction category of the form Par( C,M̂gap).

The stable system of monics M̂gap relates to the join-completion for restriction
categories via M-gaps (see Cockett [8] or Guo [17, Sec. 3.2.2] for details). We
can now show the algebraic ω-compactness theorem for restriction categories:
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Theorem 5. If C is a restriction category then Par( C,M̂gap) is algebraically
ω-compact for CPO; so for join restriction functors.

Proof. Let C be a restriction category. By Theorem 4, Par( C,M̂gap) is join
restriction category. By Adámek & Barr’s fixed point theorem and the fact
that join restriction categories are CPO-enriched (by Theorem 1) and have a
restriction zero object (which is specifically initial) by definition, it suffices to

show that Par( C,M̂gap) has colimits of ω-diagrams of embeddings. Let D : ω →
Par( C,M̂gap) be such a diagram of embeddings. This corresponds to the diagram

A

D(0) D(1)

B

D(2) . . .

m0 f0 m1 f1

in C. Since C is cocomplete, this diagram has a colimiting cocone α : D ⇒
colimD such that

A

D(0) D(1)

B

D(2) . . .

colimD

m0 f0 m1 f1

αD(0)

αA
αD(1)

αB

αD(2)

commutes. Further, since colimits in C are constructed object-wise in Set, this

colimit is stable under pullbacks, so composition in Par( C,M̂gap), corresponding

to pullbacks in C, commutes with this colimit. Thus, the family of morphisms

{(mi, αD(i+1) ◦ fi)}i∈ω is a colimiting cocone for D in Par( C,M̂gap). ut

Finally, using this machinery, we can show how this theorem extends to
inverse categories.

Corollary 2. Every inverse category can be faithfully embedded in a join inverse
category that is algebraically ω-compact for join restriction functors.

Proof. Let C be an inverse category. Since U( C) is the exact same category viewed

as a restriction category, U( C) embeds faithfully in Par( C,M̂gap), which is a join
restriction category by Theorem 4, and algebraically ω-compact by Theorem 5.

But then it follows by Lemma 3 that C embeds faithfully in Inv(Par( C,M̂gap)),
which is a join inverse category by Lemma 4, and is algebraically ω-compact
for join restriction functors (which are specifically locally monotone and contin-
uous) since fixed points of functors are (total) isomorphisms, so preserved in

Inv(Par( C,M̂gap)). ut
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4 As unique decomposition categories

A complementary view on inverse categories with countable joins is as unique de-
composition categories, a kind of category introduced by Haghverdi [18] equipped
with a partial sum operation on Hom-sets via enrichment in the category of
Σ-monoids (shown to be symmetric monoidal by Hoshino [23]). Unique decompo-
sition categories (including Hoshino’s strong unique decomposition categories [23]
which we will employ here) are specifically traced monoidal categories [26] if
they satisfy certain conditions. This is desirable when modelling functional
programming, as traces can be used to model notions of feedback [1] and recur-
sion [19,20,24].

Here, we will show that inverse categories with countable joins and a join-
preserving disjointness tensor (due to Giles [16]) are strong unique decomposition
categories, and satisfy the conditions required to be equipped with a trace. We
extend this result further to show that the trace is a †-trace [37], and thus has
pleasant inversion properties (the trace in PInj is well studied, cf. [2, 18, 22]).
This is particularly interesting given that the reversible programming language
Theseus [25] and the combinator calculus Π0 [7] both rely on a †-trace for
reversible recursion.

We begin with the definition of a Σ-monoid [18] (see also Manes & Benson [30]
where these are described as positive partial monoids):

Definition 13. A Σ-monoid (M,Σ) consists of a nonempty set M and a partial
operator Σ defined on countable families in M (say that a family {xi}i∈I is
summable if

∑
i∈I xi is defined) such that

(i) if {xi}i∈I is a countable family in M and {Ij}j∈J is a countable partitioning
of I, then {xi}i∈I is summable iff all {xi}i∈Ij and

∑
i∈Ij xi are summable

for all j ∈ J , and in this case∑
j∈J

∑
i∈Ij

xi =
∑
i∈I

xi ,

(ii) any family {xi}i∈I in M where I is singleton is summable with
∑

i∈I xi = xj
if I = {j}.

The class of Σ-monoids with homomorphisms preserving partial sums forms
a category, ΣMon. As such, a category C is enriched in ΣMon if all hom-sets
of C are Σ-monoids, and composition distributes over partial addition.

Lemma 5. Every inverse category with countable joins is ΣMon-enriched.

Proof (Sketch). In an inverse category C, defining∑
i∈I

si =
∨

s∈{si|i∈I}

s

for a countable family {si}i∈I of some hom-set Hom C(A,B), summability co-
incides with inverse compatibility. That the axioms of Σ-monoids are satisfied
follows straightforwardly by Def. 11. ut
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Haghverdi defines unique decomposition categories in the following way:

Definition 14 (Haghverdi). A unique decomposition category C is a symmet-
ric monoidal category enriched in ΣMon such that for all finite index sets I
and all j ∈ I, there are quasi-injections ιj : Xj → ⊕i∈IXi and quasi-projections
ρj : ⊕i∈IXi → Xj satisfying

(i) ρk ◦ ιj = 1Xk
if j = k, and 0Xj ,Xk

otherwise, and
(ii) Σi∈Iιi ◦ ρi = 1⊕i∈IXi .

This definition is strengthened by Hoshino:

Definition 15 (Hoshino). A strong unique decomposition category is a sym-
metric monoidal category enriched in ΣMon satisfying that the identity on the
monoidal unit I is 0I,I , and 1X ⊕ 0Y,Y + 0X,X ⊕ 1Y = 1X⊕Y for all X and Y .

An elementary result is that strong unique decomposition categories are
unique decomposition categories, with their quasi injections and projections given
by ι1 = (1A ⊕ 00,B) ◦ u−1r : A→ A⊕B and ρ1 = ur ◦ (1A ⊕ 0B,0) : A⊕B → A,
and analogously for ι2 and ρ2 (thus extending to any finite index set).

As such, (strong) unique decomposition categories rely on a sum-like monoidal
tensor – in the context of inverse categories, such a one can be found in Giles’
definition of a disjointness tensor [16, Def. 7.2.1].

Definition 16 (Giles). An inverse category C with a restriction zero object 0
is said to have a disjointness tensor if it is equipped with a symmetric monoidal
restriction functor −⊕− : C× C→ C such that

(i) the restriction zero 0 is the tensor unit, and
(ii) the morphisms given by q1 = (1A ⊕ 00,B) ◦ u−1r : A → A ⊕ B and
q2 = (00,B ⊕ 1A) ◦ u−1l : A→ B ⊕A are jointly epic, and their partial in-

verses q†1 : A⊕B → A and q†2 : B ⊕A→ A are jointly monic,

where ul : 0⊕ A→ A and ur : A⊕ 0→ A denote the left respectively the right
unitor of the symmetric monoidal tensor.

Though not required from this definition, since we are working exclusively with
join inverse categories, we make the additional assumption that the disjointness
tensor is a join restriction functor. Since Giles’ definition already demands that
the zero object be the monoidal unit, and even defines qi precisely like Hoshino’s
definition of ιi (one can similarly see that q†i = ρi), we can show the following:

Theorem 6. Every inverse category with countable joins and a join-preserving
disjointness tensor is a strong unique decomposition category.

Proof. By Lemma 5, any inverse category with countable joins (and a join-
preserving disjointness tensor) is enriched in ΣMon, so it suffices to show that
the (specifically symmetric monoidal) disjointness tensor satisfies Def. 15. That
1I,I = 0I,I follows by 10,0 = 00,0 for the (restriction) zero 0, and 1X ⊕ 0Y,Y +
0X,X ⊕ 1Y = 1X⊕Y by the definition of partial sums as joins and the additional
requirement that the disjointness tensor preserves joins. ut
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Due to the ΣMon-enrichment on unique decomposition categories, the trace can
be constructed as a denumerable sum of morphisms, provided that morphisms of
a certain form are always summable, cf. [18, Prop. 4.0.11] and [23, Corr. 5.4]:

Theorem 7 (Haghverdi, Hoshino). Let C be a (strong) unique decomposition
category such that for every X, Y , and U and every f : X⊕U → Y ⊕U , the sum
f11 +

∑∞
n=0 f21 ◦ fn22 ◦ f12 exists, where fij = ρj ◦ f ◦ ιi. Then C has a uniform

trace given by

TrUX,Y (f) = f11 +

∞∑
n=0

f21 ◦ fn22 ◦ f12 .

In a join inverse category, we say that parallel morphisms f, g : A → B are
inverse disjoint if f ◦ g = 0A,A and f† ◦ g† = 0B,B .

Lemma 6. In an inverse category, the following hold:

(i) All inverse disjoint morphisms are inverse compatible,
(ii) g ^ g′ and f ^ f ′ implies g ◦ f ^ g′ ◦ f ′ when dom(g) = cod(f), and

(iii) g ◦ f = g ◦ f ◦ f when dom(g) = cod(f).

This lemma allows us to show the existence of all trace sums: The core idea is to
use part (ii) of this lemma until we get morphisms that are immediately disjoint
by (iii), so inverse compatible by (i).

Lemma 7. In a join inverse category with a disjointness tensor, all morphisms
of the forms f11 or f21 ◦ fn22 ◦ f12 for any n ∈ N and some f : X ⊕ U → Y ⊕ U
are pairwise inverse compatible.

Recall that a †-category with a trace is said to have a †-trace (see, e.g., Selinger [37])
if TrUX,Y (f)† = TrUY,X(f†) for every morphism f : X ⊕ U → Y ⊕ U .

Theorem 8. Every inverse category C with countable joins and a join-preserving
disjointness tensor has a uniform †-trace.

Proof. By Theorem 6, C is a (strong) unique decomposition category, and by
Lemma 7 it has all trace sums, so it follows that C has a uniform trace. To see
that this is a †-trace, let f : X⊕U → Y ⊕U be a morphism of C. We notice that

(fij)
† = (ρj ◦ f ◦ ιi)† = (q†j ◦ f ◦ qi)

† = q†i ◦ f
† ◦ q††j = q†i ◦ f

† ◦ qj = (f†)ji

and so (f11)† = (f†)11 and

(f21 ◦ fn22 ◦ f12)† = (f12)† ◦ (fn22)† ◦ (f21)† = (f†)21 ◦ (f†22)n ◦ (f†)12

which gives us

TrUX,Y (f)† =

(
f11 +

∑
n∈ω

f21 ◦ fn22 ◦ f12

)†
=

(
f11 ∨

∨
n∈ω

f21 ◦ fn22 ◦ f12

)†

= (f11)† ∨

(∨
n∈ω

f21 ◦ fn22 ◦ f12

)†
= (f11)† ∨

∨
n∈ω

(f12)† ◦ (fn22)† ◦ (f21)†

= (f†)11 ∨
∨
n∈ω

(f†)21 ◦ (f†)n22 ◦ (f†)12 = TrUY,X(f†)
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by definition of the partial sum as join (Lemma 5), and by (
∨

f∈F f)† =
∨

f∈F f
†

by Lemma 2. ut

5 Conclusion

We have shown that inverse categories with countable joins carry with them a few
key properties that are highly useful for modelling partial reversible functional
programming. Notably, we have shown that any inverse category with countable
joins is CPO-enriched – from this view, we gathered that morphism schemes have
fixed points, and that the partial inverses of such fixed points can be computed
as fixed points of adjoint morphism schemes. This gave us a model of recursion à
la rfun.

Further, we were able to show that any inverse category can be embedded in
an inverse category with joins, in which all join restriction functors have canonical
fixed points. Finally, we showed that the presence of a join-preserving disjointness
tensor on an inverse category with countable joins gives us a strong unique
decomposition category, and in turn, a uniform †-trace: a model of recursion à la
Theseus and Π0.

Restriction categories have recently been considered as enriched categories by
Cockett & Garner [12], though their approach relied on enrichments based on
weak double categories rather than monoidal categories, as it is otherwise usually
done (including in this paper). Further, fixed points in categories with a notion of
partiality have previously been considered, notably by Fiore [14] who also relied
on order-enrichment, though his work was in categories of partial maps directly.
Finally, Giles [16] has shown the construction of a trace in inverse categories
recently, relying instead on the presence of countable disjoint sums rather than
joins (whether or not this approach leads to a †-trace is unspecified). It should
also be noted that the trace in the canonical inverse category PInj has seen
study independent of unique decomposition and restriction categories, notably
by Hines [22] and Abramsky, Haghverdi, and Scott [2].

As regards future work, since an inverse category with countable joins and a
disjointness tensor is †-traced, it can be embedded in a †-compact closed category
via the Int-construction [26,38]. It may be of interest to consider †-compact closed
categories generated in this manner, as we suspect these will be inverse categories
as well (notably, Int(PInj) is [22]) – and could provide, e.g., an alternative
treatment of projectors as restriction idempotents, and isometries as restriction
monics (see also Selinger [36]).

Additionally, while our focus in this article has been on inverse categories, we
conjecture that many of these results can be generalized to restriction categories.
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