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Abstract

Recently, a number of reversible functional programming languages have been proposed. Common to several
of these is the assumption of totality, a property that is not necessarily desirable, and certainly not required
in order to guarantee reversibility. In a categorical setting, however, faithfully capturing partiality requires
handling it as additional structure. Recently, Giles studied inverse categories as a model of partial reversible
(functional) programming. In this paper, we show how additionally assuming the existence of countable
joins on such inverse categories leads to a number of properties that are desirable when modelling reversible
functional programming, notably morphism schemes for reversible recursion, a f-trace, and algebraic w-
compactness. This gives a categorical account of reversible recursion, and, for the latter, provides an answer
to the problem posed by Giles regarding the formulation of recursive data types at the inverse category level.
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1. Introduction

Reversible computing, that is, the study of computations that exhibit both forward and backward
determinism, originally grew out of the thermodynamics of computation. Landauer’s principle states that
computations performed by some physical system (thermodynamically) dissipate heat when information is
erased, but that no dissipation is entailed by information-preserving computations [3]. This has motivated a
long study of diverse reversible computation models, such as logic circuits [4], Turing machines [5 [6], and
many forms of restricted automata models 7} [8]. Reversibility concepts are important in quantum computing,
but are increasingly seen to be of interest in other areas as well, including high-performance computing [9],
process calculi [10], and even robotics [11], [12].

In this paper we concern ourselves with the categorical underpinnings of reversible functional programming
languages. At the programming language level, reversible languages exhibit interesting program properties,
such as easy program inversion [I3]. Now, most reversible languages are stateful, giving them a fairly
straightforward semantic interpretation [14]. While functional programs are usually easier to reason about at
the meta-level, they do not have the concept of state that imperative languages do, making their semantics
interesting objects of study.

Further, many reversible functional programming languages (such as Theseus [I5] and the II-family
of combinator calculi [I6]) come equipped with a tacit assumption of totality, a property that is neither
required [6] nor necessarily desirable as far as guaranteeing reversibility is concerned. Shedding ourselves
of the “tyranny of totality,” however, requires us to handle partiality explicitly as additional categorical
structure.
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One approach which does precisely that is inverse categories, as studied by Cockett & Lack [I7] as a
specialization of restriction categories, which have recently been suggested and developed by Giles [I§] as
models of reversible (functional) programming. In this paper, we will argue that assuming ever slightly more
structure on these inverse categories, namely the presence of countable joins of parallel morphisms [19], gives
rise to a number of additional properties useful for modelling reversible functional programming. Notably,
we obtain two different notions of reversible recursion (exemplified in the two different reversible languages
RFUN and Theseus), and an account of recursive data types (via algebraic w-compactness with respect to
structure-preserving functors), which are not present in the general case. This is done by adopting two
different, but complementary, views on inverse categories with countable joins as enriched categories — as
DCPO-categories, and as (specifically ¥Mon-enriched) strong unique decomposition categories [20] [21].

Overview. We give a brief introduction to reversible functional programming, specifically to the languages
of RFUN [22] and Theseus [15], in Section [2| and present the necessary background on restriction and inverse
categories in Section [3] In Section[4] we show that inverse categories with countable joins are DCPO-enriched,
which allows us to demonstrate the existence of (reversible!) fixed points of both morphism schemes and
structure-preserving functors. In Section 5| we show that inverse categories with countable joins and a
join-preserving disjointness tensor are (strong) unique decomposition categories equipped with a uniform
f-trace. Section [f] gives conclusions and directions for future work.

2. On reversible functional programming

In this section, we give a brief introduction to reversible functional programming, specifically to the
languages of RFUN and Theseus. For more comprehensive accounts of these languages, including syntax,
semantics, program inversion, further examples, and so on, see [22] respectively [I5].

Reversible programming deals with the construction of programs that are deterministic not just in the
forward direction (as any other deterministic program), but also in the backward direction. A central
consequence of this property is that well-formed programs must have both uniquely defined forward and
backward semantics, with backward semantics given either directly or indirectly (e.g., as is often done, by
providing a textual translation of terms into terms which carry their inverse semantics; this approach is
related to program inversion [23 24]). In the case of reversible functional programming, reversibility is
accomplished by guaranteeing local (forward and backward) determinism of evaluation — which, in turn,
leads to global (forward and backward) determinism. Though reversible functions are injective [6], injectivity
itself (a global property) is not enough to guarantee reversibility (a local property) — specifically, locally
reversible control structures are necessary [22].

One such reversible functional programming language is RFUN, developed in recent years by Yokoyama,
Axelsen, and Gliick [22]. RFUN is an untyped language that uses Lisp-style symbols and constructors for
data representation. Programs in RFUN are first-order functions, in which bound variables must be linearly
used (though patterns are not required to be exhaustive). To account for the fact that data duplication can
be performed reversibly, a duplication-equality operator [25], defined as follows, is used:

(e} = {a,2)
. y)| = { (z) ifa=y

(x,y) otherwise

In the first case, the application of |-| to the unary tuple (z) yields the binary tuple (x,x), that is, the
value z is duplicated. In the second case, when x = y, the application to (z,y) joins two identical values into
(z); otherwise, the two values are returned unchanged (two different values cannot have been obtained by
duplication of one value). Using an explicit operator simplifies reverse computation because the duplication
of a value in one direction requires an equality check in the other direction, and vice versa. Instead of using
a variable twice to duplicate a value, the duplication is made explicit. The operator is self-inverse, e.g.,
L[(x)]] = (z) and [[{z,9)]] = (z,y).

The only control structure available in RFUN is a reversible case-expression employing the symmetric
first-match policy: The control expression is matched against the patterns in the order they are given (as in,
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type Bool = False | True
type Nat = 0 | Succ Nat
A
plus (z,y) = case y of not :: Bool <+ Bool

Z = (=) False <+ True
S(u) — let (z',u') = plus (z,u) in } True < False
(', S(u"))

parity :: Nat X Bool <» Nat x Bool

fib n £ case n of | (n,b) < iter (n,0,b)
Z — (S(2),5(2)) | iter (Succ m,m,b) <> iter (n,Succ m,not b)
S(m) — let (z,y) = fib m in | dter (0,m,d) <~ (m,b)
let z = plus (y,z) in z where iter :: Nat x Nat x Bool <+ Nat x Nat x Bool
Figure 1: The Fibonacci-pair program and its helper function Figure 2: The parity program in Theseus and its type defini-
plus (z,y) = (x,z + y) in RFUN. tions and helper function not :: Bool <+ Bool.

e.g., the ML-family of languages), but, for the case-expression to be defined, once a match is found, any value
produced by the matching branch must not match patterns that could have been produced by a previous
branch. This policy guarantees reversibility. Perhaps surprising is the fact that recursion works in RFUN
completely analogously to the way it works irreversibly; ¢.e., using a call stack. In particular, inversion of
recursive functions is handled simply by replacing the recursive call with a call to the inverse, and inverting
the remainder of the function body. As such, the inverse of a recursive function is, again, a recursive function.
This point will prove important later on.

An example of an RFUN program for computing Fibonacci-pairs is shown in Figure [1] [22, 25]: Given a
natural number n encoded in unary, fib(n) produces the pair {f,+1, fnt2) where f; is the unary encoding
of the ’th Fibonacci number. Notice the use of the duplication operator in the definition of plus: The
duplication-equality operator on the right-hand side of the first branch of plus duplicates (x) into {(z,z) in
the forward direction, and checks the equality of two values (z,y) in the backward direction. This accounts
for the fact that the first branch of plus always returns two identical values, while the second branch always
returns two different values. The first-match policy of RFUN described above guarantees the reversibility of
the auxiliary function plus, which is defined by plus (z,y) = (x,z + y).

A different approach to reversible functional programming is given by Theseus, a language developed
recently by James & Sabry [I5] on top of the II° reversible combinator calculus [16} 26]. Unlike RFUN,
Theseus features a simple type system with products and sums as well as the unit and empty type, and
supports user-defined (isorecursive) data types (declared in a style similar to Haskell and languages in the
ML-family). Like RFUN, bound variables must be linearly used, but unlike RFUN, pattern clauses must be
erhaustive and non-overlapping, properties that when combined makes both guaranteeing local reversibility
and producing inverse programs straightforward.

Though Theseus is, like RFUN, a first-order language, an elegant feature with a flavor of higher-order
programming is its support for parametrized maps, i.e., functions that depend statically on data of a given
type in order to produce a reversible function. For example, though ordinary function composition cannot
be performed reversibly without production of garbage, if we know the functions to compose no later than
at compile time, we can certainly produce their composition at compile time without additional garbage.
This is handled in the Theseus type system by allowing both irreversible and (first order) reversible arrow
types, with the proviso that all irreversible arrows be discharged at compile time. In this way, a parametrized
function Q :: (a <> b) — (a > b) is not a Theseus program, but if f :: a <> b is a first-order reversible function,
then sois Q2 f::a < b.

Recursion in Theseus is achieved using typed iteration labels (a feature unique to Theseus) that specify
the type and behaviour of intermediate, tail-recursive computations. This feature is perhaps best illustrated
by an example: Figure [2| shows a Theseus-program (courtesy of [15]) that recursively computes the parity of
a natural number (encoded in unary). Though this approach sacrifices the possibility for expressing programs
with nested recursion, the benefit is that all thus specified recursive reversible functions can be expressed
as a non-recursive function that a {-trace operator is applied to (cf. [15, [16], [26] for details regarding this



operator specifically in the context of Theseus and I1°). That is to say, if f :: a <+ b is a recursive Theseus
program with an iteration label of type u, we may construct a (non-recursive) function f’::a+u < b+ u
such that the trace of f’ (tracing out w, the type of the iteration label) is precisely f. This eases the process
of obtaining inverse semantics greatly, as we only need to take the trace of the inverse of the (non-recursive,
so straightforward to invert) function f’ to obtain the inverse of the recursive function f.

3. Background

This section gives an introduction to restriction and inverse categories (with joins), dagger categories,
and categories of partial maps as they will be used in the remainder of this text. Unless otherwise stated,
the material described in this section can be found in numerous texts on restriction and inverse category
theory (e.g., Cockett & Lack [I7, 27, 28], Giles [I8], Guo [19]).

3.1. Restriction and inverse categories

We begin by recalling the definition of restriction structures and restriction categories.

Definition 1 (Cockett & Lack). A restriction structure on_a category consists of an operator (-) on
morphisms mapping each morphism f: A — B to a morphism f: A — A (the restriction idempotent of f)
such that

(i) fof=f for all morphisms f : A — B,

(ii) fo
(iii) fog= fog whenever dom(f) = dom(g), and

=go f whenever dom(f) = dom(g),

Ql

(iv) ho f = foho f whenever cod(f) = dom(h).
A category with a restriction structure is called a restriction category.

As a trivial example, any category can be equipped with a restriction structure given by setting f = 14
for every morphism f : A — B. However, there are also many useful and nontrivial examples of restriction
categories (see, e.g., [I7, Sec. 2.1.3]), the canonical one being the category Pfn of sets and partial functions.
In this category, the restriction idempotent f : A — A for a partial function f : A — B is given by the
partial identity function

(1)

A related example is the category PTop of topological spaces and partial continuous functions (see also
[18]). A partial function between topological spaces f : X — Y is continuous if

() = T if f is defined at =,
)=\ undefined otherwise.

(i) the domain of definition of f (the set of points X’ C X for which f is defined) is open in X, and

(ii) f is continuous in the usual sense, i.e., the set f~1(V) C X is open when V C Y is.

Under this definition, PTop is a restriction category, with restriction idempotents given precisely as in
Eq. ; that a partial continuous function f is defined on an open set ensures precisely that f is continuous as
well (and defined on an open set). Other examples include the category DCPO of pointed directed-complete
partial orders and strict continuous maps, slice categories 6 /A for an object A of a restriction category
6 [17], and any inverse monoid (see also [29]) viewed as a (one-object) category.

Since we take restrictions as additional structure, we naturally want a notion of functors that preserve
this structure.

Definition 2. A functor F : € — 9 between restriction categories 6 and 9 is a restriction functor if

F(f) = F(f) for all morphisms f of 6.



A morphism f : A — B of a restriction category is said to be total if f = 14. Given a restriction category
€, we can form the category Total(€), consisting of all objects and only the total morphisms of €, which
embeds in 6 via a faithful restriction functor. Restriction categories with restriction functors form a category,
rCat.

Moving on to inverse categories, in order to define thesdﬂ we first need the notion of a partial isomorphism:

Definition 3. In a restriction category 6, we say that a morphism f: A — B is a partial isomorphism

if there exists a unique morphism f° : B — A of 6 (the partial inverse of f) such that f°®o f = f and
fofo=Ffe.

Definition 4. A restriction category 6 is said to be an inverse category if all morphisms of ‘€ are partial
isomorphisms.

In this manner, if we accept an intuition of restriction categories as “categories with partiality,” inverse
categories are “groupoids with partiality” — and, indeed, the category PInj of sets and partial injective
functions is the canonical example of an inverse category. In fact, the Wagner-Preston representation theorem
(see, e.g., [29]) for inverse monoids can be extended to show that every locally small inverse category can be
faithfully embedded in PInj (see the two independent proofs by Kastl [30] and Heunen [31], or Cockett &
Lack [I7] for the special case of small inverse categories).

The analogy with groupoids goes even further; similar to how we can construct a groupoid Core(6) by
taking only the isomorphisms of 6, every restriction category % has a subcategory Inv(%) that is an inverse
category with the same objects as €, and all partial isomorphisms of € as morphisms.

More generally, inverse categories are dagger categories (sometimes also called categories with involution):

Definition 5. A category 6 is said to be a dagger category if it is equipped with a contravariant endofunctor
(=)t :6°P — € such that 12 =14 and fiT = f for all morphisms f and identities 1.

Note that this definition in particular implies that a dagger functor must act as the identity on objectsE|

Proposition 1. Every inverse category € is a dagger category with the dagger functor given by At = A on
objects, and fT = f° on morphisms.

As is conventional, we will call fT the adjoint of f, and say that f is self-adjoint (or hermitian) if f = f1,
and wunitary if fT = f~'. In inverse categories, unitary morphisms thus correspond precisely to (total)
isomorphisms. For the remainder of this text, we will use this induced dagger-structure when refering to the
partial inverse of a morphism (and write, e.g., fT rather than f°).

A useful feature of this definition of inverse categories is that we do not need an additional notion of an
“inverse functor” as a functor that preserves partial inverses; restriction functors suffice.

Proposition 2. Every restriction functor F : € — 9 between inverse categories preserves the canonical
dagger structure of 6, i.e., F(f)T = F(f) for all morphisms f of 6.

A simple argument for this proposition is the fact that partial isomorphisms are defined purely in terms
of composition and restriction idempotents, both of which are preserved by restriction functors. Inverse
categories with restriction functors form a category, invCat.

IStrictly speaking, inverse categories predate restriction categories — see Kastl [30] for the first published article on inverse
categories to the knowledge of the authors. Though we will use the axiomatization following from restriction categories, inverse
categories can equivalently be defined as the categorical extension of inverse monoids, i.e., as categories where all morphisms
have a regular inverse, and all idempotents commute.

2Though it may look as if we are superfluously demanding preservation of identities at first glance, what we are stating is
something stronger, namely that the dagger functor must map identities in “6°P to themselves in 6. That is, we are requiring
12 = 14 rather than 1TA =1y 4.



3.2. Split restriction categories and categories of partial maps

When working in a category with a distinguished class of idempotents, it is often desirable that they
splitﬂ In restriction categories, such a distinguished class is given by the class of restriction idempotents,
leading us to the straightforward definition of a split restriction category:

Definition 6. A restriction category in which every restriction idempotent splits is called a split restriction
category.

For example, when equipped with the usual restriction structure, Pfn and PTop are both split restriction
categories, though it straightforward to come up with subcategories of either that are not. It follows, by way
of the Karoubi envelope, that every restriction category 6 can be embedded in a split restriction category
Split(€) via a fully faithful restriction functor (though this requires us to show that Split(6) inherits the
restriction structure from 6, and that the fully faithful functor into this category preserves restrictions; see
Prop. 2.26 of [I7] for details). Prime examples of split restriction categories are categories of partial maps.

Categories of partial maps provide a synthetic approach to partiality in a categorical setting [32]. To
form a category of partial maps, we consider a stable system of monics: In a category 6, a collection M of
monics of 6 is said to be a stable system of monics if it contains all isomorphisms of € and is closed under
composition and pullbacks (in the sense that the pullback m’ of an m : X — B in M along any f: A — B
exists and m’ € M). Given such a stable system of monics M in a category €6, we can form the category of
partial maps as follows:

Proposition 3. Given a category 6 and a stable system of monics M of 6, we form the category of partial
maps Par(6, M) by choosing the objects to be the objects of €, and placing a morphism (m, f): A — B for
every pair (m, f) wherem: A" - A€ M and f : A’ — B is a morphism of €, as in

m A f
A/ \B

factored out by the equivalence relation - ~ - in which (m, f) ~ (m', f') if there exists an isomorphism
a: A — A" such that m’ oo = m and f' o« = f. Composition of morphisms (m, f) : A — B and
(m/,g): B— C is given by (mom” go f'): A— C where m" and ' arise from the pullback

/\
/\/\

where m” om € M precisely by M closed under composition and pullbacks.

Categories of partial maps are prime examples of restriction categories; in fact, of split restriction
categories. Even further, every split restriction category is isomorphic to a category of partial maps [I7].
As previously noted, every restriction category can be fully and faithfully embedded in a split restriction
category, and consequently, in a category of partial maps.

3Recall that a splitting of an idempotent e : A — A consists of an object A’ and morphisms m: A — A’ and r: A’ — A
such that rom =e and mor =idy/.



3.3. Partial order enrichment, joins, and compatibility

A useful feature of restriction categories, and one we will exploit throughout this article, is that hom-sets
can be equipped with a partial order, defined as follows:

Proposition 4. In a restriction category 6, every hom-set Homeg (A, B) can be equipped with the structure
of a partial order where we let f < g iff go f = f. Further, every restriction functor F is locally monotone
with respect to this order, in the sense that f < g implies F(f) < F(g).

In Pfn, this corresponds to the usual partial order on partial functions: For f,g: A — B, f < g if, for all
x € A, fis defined at x implies that g is defined at z and f(x) = g(z).

A natural question to ask is when this partial order has a least element: A sufficient condition for this is
when the restriction category has a restriction zero.

Definition 7. A restriction category 6 has a restriction zero object 0 iff for all objects A and B, there
exists a unique morphism 04 p : A — B that factors through 0 and satisfies 04,4 = 04,4.

If such a restriction zero object exists, it is unique up to (total) isomorphism (as it is a zero object in
the usual sense). When a given restriction category has such a restriction zero, the zero map 045 : A — B
is precisely the least element of Hom« (A4, B). Note that it may seem more natural to require instead that
04,8 =04,4 for all A and B. This is equivalent to requiring 04 4 = 04, 4:

Lemma 1. When a restriction category has the zero object, 04,4 = 04,4 if and only if 04, = 04 4.

ProOF. Supposing 04,5 = 04,4 for all A and B, this directly implies 04,4 = 04,4 for all A. In the other
direction, we observe by the universal mapping property of the zero object that 04, = 04,5 004,4, so

04, =04,80044=04B004,4=040044=0450044=044
by the assumption of 04,4 = 04,4 and the universal mapping property of the zero object. O

Given that hom-sets of restriction (and, by extension, inverse) categories are partially ordered, one may
wonder when this partial order has joins. It turns out, however, that it does not in the general case, and that
only very simple restriction categories have joins for arbitrary parallel morphisms. However, we can define
a meaningful notion of joins for parallel morphisms if this operation is not required to be total, but only
be defined for compatible morphisms. Nevertheless, these partial joins turn out to be tremendously useful,
and will prove key in many of the constructions in the following sections. For restriction categories, this
compatibility relation is defined as follows:

Definition 8. Parallel morphisms f,g : A — B of a restriction category 6 are said to be restriction
compatible if go f = f og; if this is the case, we write f — g. By extension, a set S C Home (A, B) is
restriction compatible, or —-compatible, if all morphisms of S are pairwise restriction compatible.

This compatibility relation can be extended to apply to inverse categories by requiring that morphisms
be compatible in both directions:

Definition 9. Parallel morphisms f,g: A — B of an inverse category € are said to be inverse compatible
if f— g and fT— gt if this is the case, we write f < g . A set S C Home (A, B) is inverse compatible, or
=-compatible, if all morphisms of S are pairwise inverse compatible.

The familiar reader will notice that this definition differs in its statement from Guo’s [I9] p. 98], who
defined f =< g in an inverse category € if f — ¢ holds in both 6 and 6°P (relying on the observation that
inverse categories are simultaneously restriction categories and corestriction categories). To avoid working
explicitly with corestriction categories, however, we will use this equivalent definition instead.

We define (countable) restriction joins and (countable) join restriction categories as follows:
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Definition 10 (Guo). Say that a restriction category 6 is outfitted with (countable) ~-joins if for all
(countable) ~-compatible subsets S of all hom sets Home (A, B) (for a compatibility relation - ~ -), there
exists a morphism \/ g s such that

(i) s <\ ,cg8 foralls € S, and s <t for all s € S implies \/ ,c g5 < t;
(i) Viess = Ves 5
(iii) fo(Veess) =Vses(fos) forall f:B— X; and
(i) (Voess) 09 =Voes(s0g) forallg:Y — A.

Definition 11. A restriction category is said to be a (countable) join restriction category if it has (countable)
—-j0ins.

In addition, we say that a restriction functor that preserves all thus constructed joins is a join restriction
functor. Notice that the join of the empty set (which is vacuously compatible for any compatibility relation),
which we will tellingly denote 04,5 : A — B, is always the least element with respect to the partial order on
hom-sets. When a join restriction category has a restriction zero object, empty joins and zero maps coincide.

As a concrete example, Pfn has joins of all restriction compatible sets; here, f — g iff whenever f and g
are both defined at some point z, f(z) = g(x), and the join of a set of restriction compatible partial functions
F ' is given by

\/ £l @) = () if there exists an f’ € F such that f’ is defined at x,
)7\ undefined otherwise.

fEF

Notice that the compatibility relation ensures precisely that the result is a partial function. This
construction extends to the category PTop of topological spaces and partial continuous functions defined on
open sets: That the resulting function is defined on an open set follows by the fact that arbitrary unions are
open, and that it is continous follows by openness and the gluing (or pasting) lemma. As such, PTop has all
joins as well.

This, finally, allows us to define join inverse categories by narrowing the definition above to only require
the existence of joins of inverse compatible (sets of) morphisms:

Definition 12. An inverse category is said to be a (countable) join inverse category if has (countable)
<-joins.

Analogously to Pfn, the category PInj is a join inverse category with joins given precisely as in Pfn,
since the additional requirement that f — ¢ ensures that the resulting partial function is injective.

4. As DCPO-categories

In the present section, we will show that inverse categories with countable joins are intrinsically DCPO-
enriched. This observation leads to two properties that are highly useful for modelling reversible functional
programming, namely the existence of fixed points for both morphism schemes for recursion (that is,
continuous endomorphisms on hom-objects) and for locally continuous functors. The former can be applied
to model reversible recursive functions, and the latter to model recursive data types [33]. Further, we will
show that the partial inverse of the fixed point of a morphism scheme for recursion can be computed as
the fixed point of an adjoint morphism scheme, giving a style of recursion similar to RFUN as discussed in
Section 21

Recall that a category is DCPO-enriched (or simply a DCPO-category) if all hom-sets are pointed
directed complete partial orders (i.e., they have a least element and satisfy that each directed subset has
a supremum), and composition is continuous and strict (recall that continuous functions are monotone by
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definition). For full generality, though the countable case will suffice for our application&El, for some cardinal
k we let DCPO,, denote the category of pointed directed k-complete partial orders (i.e., partially ordered
sets with a least element satisfying that every directed subset of cardinality at most x has a supremum) with
strict and continuous maps. To begin, we will need the lemma below.

Lemma 2. In any inverse category, partial inversion is monotone with respect to the natural partial order
in the sense that f < g implies f1 < g'.

PROOF. Suppose f < g, i.e., go f = f by definition. Then

gloff=glofofi=glogofofi=gofofi=gofoft
=foff=flofoff=flofi=/
so fT < ¢T as well, as desired. O

We also recall some basic properties of least elements of hom-sets in join inverse categories:

Lemma 3. Let 6 be an inverse (or restriction) category with (at least empty) joins, and let 04 p be the
least element (i.e., the empty join) of Hom (A, B). Then

(i) foOap =04y forall f:B—Y,
(1) 0a,pog=0xp forallg: X — A, and
(i11) 04,5 has a partial inverse OTA7B =0p,4.

PrOOF. For ({if), since 04 p is the empty join, it follows that f o045 = fo\ 5= V,ep(fos) =0ay,
and completely analogously for . For , let 0,4 be the least element in Home (A, B). Then

O0p,ac04p = (\/ 8) o (\/t> = (\/ 8) 004, = \/(SOOA,B)ZOA,AZ \/fzwzm7

seD ted s€D seD ted ted
and by entirely analogous argument, 04,5 00p a4 =05 = 0p,4. O

These lemmas allow us to show DCPO,-enrichment (for some cardinal k) of inverse categories with joins
of directed sets of parallel morphisms with cardinality at most s:

Theorem 4. Every inverse (or restriction) calegory satisfies that if it has joins of compatible sets of
cardinality at most k respectively all joins of compatible sets, it is enriched in DCPO, respectively DCPO.

PRrOOF. Let A, B be objects of 6, and let F' C Hom (A, B) be directed (with respect to the canonical
partial ordering) — of cardinality at most k, if required. Let f,g: A — B be in F. Since F is directed,
there exists an h : A — B in F such that f < h and ¢ < h, i.e., hof = f and hog = g. But then
gof=hogof=hofog=fogso f— g;by Lemma[2 we have fT < A and gt < it as well, so ft — ¢
follows entirely analogously. Thus f < g, so F' is <-compatible, allowing us to form the supremum of F' by

sup F' = \/f

feF

which is the supremum of this directed set directly by definition of the join.

4Strictly speaking, enrichment in w-CPOs is sufficient to show all results that follow from Theorem [4] i.e., Corollary [5]
Theorem |7} and Theorem Notably, only countable joins (rather than arbitrary joins) are needed to obtain these results.
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Monotony of compositions holds in all restriction categories, not just inverse categories with countable

joins: Supposing f < g then go f = f, and for h: B — X,
hogohof=hogohogof=hogohogof=hogof="hof

so ho f < hogin Homeg(A, X); the argument is analogous for postcomposition. That composition is
continuous follows by monotony and definition of joins, as we have

hosup {f}jer =ho \/ f=\/(hof)=sup{ho f}er

feF fer
for all h: B — X, and analogously for postcomposition. That composition is strict follows by Lemma [3]

Recall that a functor F' : € — 9 between DCPO-categories is locally continuous iff each Fu p :
Home (A, B) — Homg (F A, FB) is continuous (so specifically, all locally continuous functors are locally
monotone). Note that since all restriction functors preserve the partial order on hom-sets, and since suprema
are defined in terms of joins, join restriction functors are in particular locally continuous.

4.1. Reversible fized points of morphism schemes

In the following, let € be an inverse category with countable joins —so, by T heorem enriched in DCPOy,.
We will use the term morphism scheme to refer to a continuous function f : Home (A, B) — Home (X,Y) —
note that such schemes are morphisms of DCPOy, and not of the inverse category €, so they are specifically
not required to have inverses. Enrichment in DCPOy, then has the following immediate corollary by
Kleene’s fixed point theorem:

Corollary 5. Every morphism scheme of the form f : Home (A, B) — Home (A, B) has a least fized point
fixf:A— B in6.

PROOF. Define fix f = sup {f™(04,5)}new; this is an w-chain, so specifically a directed set of cardinality
at most Ng. That this is the least fixed point follows by Kleene’s fixed point theorem, as 04 g is the least
element in Home (A, B). O

Morphism schemes on their own are useful for modelling parametrized reversible functions, as discussed
in relation to Theseus in Section [2l Under this interpretation, recursive reversible functions can be seen as
the least fixed points of self-parametrized reversible functions.

Given that we can thus model reversible recursive functions via least fixed points of morphism schemes, a
prudent question to ask is if the inverse of a least fixed point can be computed as the least fixed point of
another morphism scheme. We will answer this in the affirmative, but to do this, we need to show that the
induced dagger functor is locally continuous.

Lemma 6. The canonical dagger functor t: 6€°°P — 6 is locally continuous.

ProOOF. Let F' C Home (A, B) be directed with respect to the canonical partial order. As local monotony
was already shown in Lemma it suffices to show that suprema are preserved. Since f <'\/ fer f for each

T
f € F by Definition we have ff < (\/feF f) for all f € F by monotony of T, and so

T
sup {(fThrer=\/ /1 < |\ ]| =su {f}ep

fer fer
by Deﬁnition In the other direction, we have f </ rert tfor all f € F by Deﬁnition S0 by monotony

T T
of t, f = fit < (erF fT) for all f € F. But then erFf < <VfEF fT) by Deﬁnition and so by
10



monotony of t, we finally get

T Tt
sup {[Hep= V| < (V| =V f=sw{{T}er

feF feEF feF
as desired. O

With this lemma, we are able to show that the inverse of a least fixed point of a morphism scheme can be
computed as the least fixed point of an adjoint morphism scheme:

Theorem 7. Every morphism scheme of the form f : Home (A, B) — Home (A, B) has an adjoint morphism
scheme f; : Home (B, A) — Home (B, A) such that (fix f)T = fix f;.

PROOF. Let 14 5 : Home (A, B) — Home (B, A) denote the family of functions defined by ta p(f) = fT;
each of these are continuous by Lemma |6} and an isomorphism (with inverse ¢ _4) by fiT = f. Given a
morphism scheme f : Home (A, B) — Home (A, B), we define f; =14 o foup 4 — this is continuous since
it is a (continuous) composition of continuous functions. But since

fi=@apofoipa)"=tapofoipa

by ¢p,a an isomorphism with inverse ¢4, g, and since OL, g =0p4 by Lemma we get

fix f; = sup {f{(05.4) new = sup {(ta© f" 015.4)(05.4) }necw = sup {f"(05 1) Inew
= sup {f"(04,5) tnew = sup {f"(04.5) Hhew = (fix f)f
as desired. m

In modelling recursion in reversible functional programming, this theorem states precisely that the partial
inverse of a recursive reversible function is, itself, a recursive reversible function, and that it can be obtained
by inverting the function body and replacing recursive calls with recursive calls to the thus constructed
inverse: This is precisely the inverse semantics of recursive reversible functions in RFUN, as discussed in
Section 2

4.2. Algebraic w-compactness for free!

A pleasant property of DCPO-categories is that algebraic w-compactness — the property that every
locally continuous functor has a canonical fixed point — is relatively easy to check, thanks to the fixed point
theorem due to Addmek [33] and Barr [34]:

Theorem 8 (Addmek & Barr). Let 6 be a (D)CPO-category with an initial object. If 6 has colimits
of w-sequences of embeddings, then 6 is algebraically w-compact over (D)CPO.

Note that this theorem was originally stated for CPO-categories; categories in which every hom-set is an
w-CPO (in the sense that every w-chain of parallel morphisms has a supremum), and composition is continuous
and strict. However, since w-chains are but specific examples of directed sets, every DCPO-category is a
CPO-category, and every functor that is locally continuous with respect to DCPO-enrichment is locally
continuous with respect to CPO-enrichment as well. By the same argument, noting that w-chains are
directed sets of cardinality at most Ny, it suffices to be DCPOy,-enriched.

Recall that an embedding in a (D)CPO-category is a morphism e : A — B with a projection p: B — A
such that poe =14 and eop C 15 (as such, with the canonical (D)CPO-enrichment, embeddings in join
restriction categories are specifically total — in fact, they correspond to restriction monics in the sense of [I7]).

Canonical fixed points of functors are of particular interest in modelling functional programming, since
they can be used to provide interpretations for recursive data types. In the following, we will couple this
theorem with a join-completion theorem for restriction categories to show that every inverse category can be
faithfully embedded in an algebraically w-compact inverse category with joins. That this succeeds rests on
the following lemmas:

11



Lemma 9. There is an adjunction

Inv

—
rCat T invCat
\_/

U

between the forgetful functor U : invCat — rCat and the functor Inv : rCat — invCat that maps a
restriction category to its subcategory of partial isomorphisms.

PROOF. Let F' : U(6) — 9 be a restriction functor between some inverse category € and restriction
category 9. As 6 is an inverse category, the restriction category U(6) contains only partial isomorphisms,
which F has to preserve (as it is a restriction functor); as such, the image of F' in 9 lies in the inverse
subcategory Inv(9), so we may simply define the functor € — Inv(9) to act precisely as F' on both objects
and morphisms.

In the other direction, given G : 6 — Inv(9), we define the restriction functor U(€) — 9 by letting it
act as G on both objects and morphisms; nothing further is required, as inverse categories are extensionally
restriction categories.

That is determines a natural isomorphism follows immediately by the fact that neither direction actually
alters how the given functor acts on objects or morphisms. O

An immediate consequence of this adjunction is that the inverse subcategory Inv(%) of % is uniquely
determined (up to canonical isomorphism) as the largest inverse subcategory of %, in the sense that for any
other inverse category 6 with a restriction functor G : U(€) — 9, there is a unique functor F : € — Inv(9)
such that the following diagram commutes

29)

Inv(9) Unv(2)) ——— 9
F U(F) g
€ U(6)

where the counit e« is the obvious faithful inclusion functor. For our purposes, it gives the following corollary:

Corollary 10. If an inverse category 6 embeds faithfully in a restriction category 9D, it also embeds faithfully
in Inv(9).

PROOF. By Lemma[9] it suffices to show that F : 6 — Inv(2) is faithful when G : U(6) — @ is. Suppose
G is faithful; by the universal mapping property, G = e¢ o U(F) for a unique F : 6 — Inv(%). Since G
is faithful by assumption, U(F') must be faithful as well, in turn implying that F' is faithful (as U is the
forgetful functor).

Lemma 11. The functor Inv : rCat — invCat takes join restriction categories to join inverse categories
(and preserves join restriction functors).

PrOOF. It suffices to show that if .S is a set of inverse compatible parallel partial isomorphisms, then \/ g s
is a partial isomorphism — this follows directly by continuity of partial inversion (see Lemma @

The latter of these lemmas was also shown by Guo [I9, Lemma 3.1.27]. As for the completion theorem,
in order to ease presentation we make the following notational shorthand.

Convention 13. For a restriction category €, let € denote the category of presheaves Set Total(Split(%6))™

Note that € is cocomplete and all colimits are stable under pullback (since colimits in 6 are constructed
object-wise in Set). This is used in the completion theorem for join restriction categories, due to Cockett
and Guo [19] B5].
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Theorem 12 (Cockett & Guo). Every restriction category € can be faithfully embedded in a join restric-
tion category of the form Par(%,/\/lgap).

The stable system of monics @ relates to the join-completion for restriction categories via M-gaps
(see Cockett [35] or Guo [19, Sec. 3.2.2] for details).

Lemma 13. For a a split restriction category Par(6, M), the following are equivalent:
(i) Every hom-set of Par(6, M) has a least element,
(ii) 6 has a strict initial object 0 and each morphism 4 : 0 — A is in M, and

(i1i) Par(6, M) has a restriction zero object.

Proor. (i) < (i): See Guo [19], Lemmas 3.3.1 and 3.3.2.
= ({il): We will show that 0 is a restriction zero in Par(6, M) with the zero map 04,5 : A — B given

by the span A &0z B Suppose that some morphism (m, f) : A — B factors through 0 in Par(6¢, M)
as (ma, f2) o (mq, f1), i.e., we are in a situation indicated by the bottom part of the diagram below in €6,
where (mq omb, fa 0 fi) ~ (m, f) (i.e., there exists an isomorphism « in ‘6 such that m; o m} o a = m and
fao floa=).

But since f; omb = mgo f{ : C — 0 is a morphism into the strict initial object 0, it must be an
isomorphism, with only possible inverse the unique map 1¢ : 0 — C. Since !4 = !¢ o m) om; and
'g = lg o f{ o fo the universal mapping property of the initial object, it follows that the isomorphism
lo witnesses (1a,!5) ~ (m1omb, fao f1) ~ (m, f), so 0 is the zero object in Par(€,M). That it is the
restriction zero follows by the fact that the restriction structure on Par(‘6, M) is given by (m, f) = (m,m),
50 04,4 = ('a,'4) =04,4.

A’ B
S NOA N

(i) = : Let 04,5 : A — B be the unique zero map for arbitrarily chosen objects A and B, and let
f : A — B be any other morphism. By Lemma 04,5 =04 4 for a restriction zero, so fo0s p = fo044 =
04,5 by the universal mapping property of the zero object; thus 04,5 < f, and hence 04 p is the least
element in Hom(A, B). O

A B

We can now show the algebraic w-compactness theorem for restriction categories:

Theorem 14. If € is a restriction category then Par(%,/\//lga\p) 1s algebraically w-compact over DCPO,
and thus over join restriction functors.

PROOF. Let 6 be a restriction category. By Theorem Par(6, /ﬁ;) is a join restriction category, and
since it has all joins (specifically all empty joins), it follows that it has a restriction zero object 0 (which is
specifically initial) by Lemma By Adamek & Barr’s fixed point theorem and the fact that restriction

categories with arbitrary joins are DCPO-enriched (by Theorem , it suffices to show that Par(6, @)

has colimits of w-diagrams of embeddings. Let D : w — Par(6, Mgap) be such a diagram of embeddings.
This corresponds to the diagram

13



A B
2N N S
0) D(1) D2) -

in €. Since € is cocomplete, this diagram has a colimiting cocone « : D = colim D such that the diagram
below commutes. Further, since colimits in € are constructed object-wise in Set, this colimit is stable under
pullbacks, so the pullbacks in € used for composition in Par(%, @) commutes with this colimit. Since
embeddings are total, each m; is an isomorphism, and since isomorphisms are stable under pullback, any m/,
arising from a pullback (correponding to composition) is an isomorphism as well. As such, any m; om;_, is
an isomorphism, and so the isomorphism m;(_:ll) witnesses (1m; 0mj 1, ap(it2)© fix10 fi) ~ (M, apy1y o fi);
iterating this argument for arbitrary finite k, we see that everything commutes, as desired. Thus, the family
of morphisms {(m;, ap(i+1) © fi) }icw is a colimiting cocone for D in Par(€, @).

V\ /\ —

D(i —|— 1) D(i+2)
O‘D(H-l) /
D‘D(L) QD (i42)
cohmD

Finally, using this machinery, we can show how this theorem extends to inverse categories.

Corollary 15. Every inverse category can be faithfully embedded in a join inverse category that is algebraically
w-compact over join restriction functors.

PROOF. Let 6 be an inverse category. Since U(9€) is the exact same category viewed as a restriction
category, U(€) embeds faithfully in Par(%m\//l;), which is a join restriction category by Theorem
and algebraically w-compact by Theorem But then it follows by Corollary |10 that 6 embeds faithfully
in Inv(Par(6, /ﬁga\p)), which is a join inverse category by Lemma and is algebraically w-compact for
join restriction functors (which are specifically locally continuous) since fixed points of functors are (total)

isomorphisms, so preserved in Inv(Par(6, Mgap)). O

4.3. Applications in models of reversible functional programming

This final corollary shows directly that join inverse categories are consistent with algebraic w-compactness
over join restriction functors, which can thus be used to model recursive data types in the style of Theseus as
well as RFUN terms, given the existence of suitable join-preserving monoidal functors as follows: Suppose we
are given an inverse product (®,1) and a disjointness tensor (@,0), both join-preserving (see [18] for details
on both; the definition of latter can also found in Definition [17]in the following section) such that there are
(total) natural isomorphisms

da

A9 (BaC) = (AeB)®(A®C) 42020

giving the category the structure of a bimonoidal category (or rig category; see also [36] [37]). Using the
compactness theorem from before, this enables us to model all (isorecursive) data types expressible in Theseus
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by modelling product types using the inverse product, sum types using the disjointness tensor, the unit type
as 1, the empty type as 0, and recursive types using the canonical fixed point. For example, the two types
from the Theseus example in Figure [2] defined as

type Bool = False | True
type Nat = 0 | Succ Nat

can both be given very familiar denotations as 1 @ 1 respectively uX.1 ® X (i.e., the least — in this case,
unique — fixed point of the functor defined by F(X) =1¢ X).

Though RFUN is untyped, with terms formed using Lisp-style symbols and constructors, this bimonoidal
structure is also helpful in constructing a denotation of the universal type of RFUN terms. Formally, RFUN
terms are constructed inductively as follows: Given a denumerable set S of symbols, a term ¢ is either a
symbol (i.e., t € S) or of the form c(t1,ts,...,t) for some finite k, where ¢ € S and each ¢; is a term.
Supposing that S is the Kleene star closure of the latin alphabet, examples of terms include a, s(s(z)), and
f(o,0(bar, baz)).

Since the symbols S is denumerable, we can identify symbols one-to-one with natural numbers — and
so with the object pX.1@® X using algebraic compactness. Further, in the familiar way, we can define the
functor mapping an object A to lists of A by A — uX.1® (A® X). This, finally, means that we can define a
functor mapping an object A to terms over A by A — pX. A ® L(X).

Moreover, we saw how this view of join restriction categories as DCPO-categories also enabled the style of
reversible recursion found in RFUN, exemplified in the Fibonacci-pair program in Figure[l] More specifically, to
give the denotation of a recursive function in RFUN, instead of trying to interpret it directly as an endomorphism

on the term object 7' — T', we instead interpret it as a morphism scheme Hom(7',T") 11, Hom(T,T) in
which the recursive call is replaced by a call to the morphism given as argument, and then take the least
fixed point of this morphism scheme fix [f’] as the denotation of the recursive function f. Further details on
this construction, and the other constructions sketched in this section, will appear in a forthcoming paper.

5. As unique decomposition categories

Complementary to the view on inverse categories with countable joins as DCPO-categories, we will
show that these can also be viewed as unique decomposition categories, a kind of category introduced
by Haghverdi [20] equipped with a partial sum operation on hom-sets via enrichment in the category of
Y-monoids (shown to be symmetric monoidal by Hoshino [21]). Unique decomposition categories (including
Hoshino’s strong unique decomposition categories [2I] which we will employ here) are specifically traced
monoidal categories [38] if they satisfy certain conditions. This is desirable when modelling functional
programming, as traces can be used to model notions of feedback [39] and recursion [40H42].

Here, we will show that inverse categories with countable joins and a join-preserving disjointness tensor
(due to Giles [I8]) are strong unique decomposition categories, and satisfy the conditions required to be
equipped with a trace. We extend this result further to show that the trace is a {-trace [43], and thus
has pleasant inversion properties (the trace in PInj is well studied, cf. [20, [44] 45]). This is particularly
interesting given that the reversible programming language Theseus [15] and the combinator calculus I1° [16]
both rely on a f-trace for reversible recursion.

We begin with the definition of a ¥-monoid [20] (see also Manes & Benson [46] where these first appeared
as positive partial monoids):

Definition 14. A ¥-monoid (M,X) consists of a nonempty set M and a partial operator ¥ defined on

countable families in M (say that a family {x;}icr is summable if Y., x; is defined) such that

(1) if {xi}tier is a countable family in M and {I;}jcs is a countable partitioning of I, then {x;}icr is
summable iff all {x;}ic1; and Zielj x; are summable for all j € J, and in this case

IHIES o

jeJiel, i€l
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(ii) any family {x;}icr in M where I is singleton is summable with ), x; = x; if I = {j}.

The class of Y-monoids with homomorphisms preserving partial sums forms a category, ¥XMon. As such,
a category 6 is enriched in XMon if all hom-sets of 6 are ¥-monoids, and composition distributes over
partial addition.

Lemma 16. Fvery inverse category with countable joins is X Mon-enriched.

PROOF. Let ‘6 be an inverse category with countable joins. Let {s;}icr be a countable family of morphisms
taken from Home (A, B) for some objects A, B of 6 and countable index set I. We define

S Vo

i€l s€{s;liel}

so, by definition, summability coincides with join compatibility.

To see that axiom of Definition [14] is satisfied, let {I;};cs be a partitioning of I and suppose that
{si}ier is summable, i.e., inverse compatible. By definition of inverse compatibility, this means that all
morphisms of {s;};c; are pairwise inverse compatible, and since all partition families {s;}icz, for j € J
consist only of morphisms taken from {s; };er, they are summable by all {s; | ¢ € I;} inverse compatible; that

2> m=)

jeEJ i€l iel

follows by the least upper bound property of the join (Definition [12] (i)).

Conversely, suppose that all {s;}ic7; and all ), 1, Si are summable for all j € J. Let f and g be arbitrary
morphisms of {s;}icr; then, f is an element of a partition {s;}icr, for j € J, and g is an element of a
partition {s;}ics, for k € J. If j = k then f and g are inverse compatible by {s;}ic;, summable — if j # k,
we have f < Vse{smelj} 5= Zielj s; so f and \/se{si\ielj} s are inverse compatible by Lemma and g and
Ve {silicT,} S are inverse compatible by an analogous argument. But then f and g are inverse compatible by

selsilier;} S = 2ier, Si and V cq ey 8 = Dieq, Si summable (i.e., inverse compatible) by assumption,
and by transitivity of join compatibility. The summation identity follows, once again, using Definition [12] (i).

For axiom of Definition this follows by f < f for any morphism f : A — B, and so for a singleton
F = {f} (and such a singleton always exists, since every hom-set has a least element given by the empty join),
J <Vsepsand \/ s < f both follow by Definition (12| (i), so f = \/,cp 5. That composition distributes
over partial addition follows directly by Definition [12] (iii) and (iv). O

Haghverdi defines unique decomposition categories in the following way:

Definition 15 (Haghverdi). A unique decomposition category 6 is a symmetric monoidal category enriched
in XMon such that for all finite index sets I and all j € I, there are quasi-injections ¢; : X; — @1 X; and
quasi-projections p; : @;er X; — X satisfying

(i) provj = 1x, if j = k, and Ox, x, otherwise, and
(Z’Z) Zielbi (¢] pz = 1@1'61)(1"

By slight abuse of notation, we will use 04,5 : A — B to denote the morphism arising from summing the
empty family of Home (A4, B). That the empty family is always summable — and that its sum serves as unit —
follows from axioms and of Definition as and the assumption of nonemptiness guarantees the
summability of at least one family, while (i) ensures that any partitioning of this family — including into
empty partitions — is summable when the family is (so the empty family is summable), and that the sum of
summed partitions coincides with the sum of the original family (giving us that the sum of the empty family
is the unit; see also [46] or [20]). This allows us to state the strengthened definition by Hoshino:
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Definition 16 (Hoshino). A strong unique decomposition category is a symmetric monoidal category
enriched in XMon satisfying that the identity on the monoidal unit I is Or 1, and that

Ix®0yvy +0xx B ly = 1xgyv
for all X and Y.

An elementary result is that strong unique decomposition categories are unique decomposition categories,
with their quasi injections and quasi projections given by 13 = (14 ® 0pp)ou, ' : A - A& B and
pr=1u0(la®0po): A® B — A (where u, : A® 0 — A is the right unitor of the monoidal functor — & —),
and analogously for ¢o and ps (thus extending to any finite index set).

As such, (strong) unique decomposition categories rely on a sum-like monoidal tensor — in the context of
inverse categories, such a one can be found in Giles’ definition of a disjointness tensor [I8, Definition 7.2.1].

Definition 17 (Giles). An inverse category € with a restriction zero object 0 is said to have a disjointness
tensor if it is equipped with a symmetric monoidal restriction functor — ® — : € X 6 — 6 such that

(i) the restriction zero 0 is the tensor unit, and

(ii) the morphisms 1I; : A — A® B and Il : A — B ® A given by 1I; = (14 ® 0p.p) o u, ! and
Iy = (00,5 ® 14) ouf1 are jointly epic, and their partial inverses H]; A B — A and H; :BoA— A
are jointly monic,

where u; : 0@ A — A and u, : AD 0 — A denote the left respectively the right unitor of the symmetric
monotdal tensor.

Though not required from this definition, since we are working exclusively with join inverse categories,
we make the additional assumption that the disjointness tensor is a join restriction functor. Since Giles’
definition already demands that the zero object be the monoidal unit, and even defines II; precisely like
Hoshino’s definition of ¢; (one can similarly see that H;f = p;), we can show the following:

Theorem 17. Every inverse category with countable joins and a join-preserving disjointness tensor is a
strong unique decomposition category.

Proor. By Lemma any inverse category with countable joins (and a join-preserving disjointness
tensor) is enriched in ¥Mon, so it suffices to show that the (specifically symmetric monoidal) disjointness
tensor satisfies Definition That 1;; = 07 follows by 1go = 0Og for the (restriction) zero 0, and
1x ®0y,y +0x,x ®1ly = 1xgy by the definition of partial sums as joins and the additional requirement
that the disjointness tensor preserves joins. O

Due to the XMon-enrichment on unique decomposition categories, the trace can be constructed as a
denumerable sum of morphisms, provided that morphisms of a certain form are always summable, cf. [20),
Prop. 4.0.11] and [21, Corr. 5.4]:

Theorem 18 (Haghverdi, Hoshino). Let 6 be a (strong) unique decomposition category such that for
every X, Y, and U and every f : X @ U — Y @ U, the sum fi1 + > ooy fo1 © fah o fia emists, where
fij=pjo foui. Then € has a uniform trace given by

oo
TSy (f) = fir+ D faro f3ho fia.
n=0
In a restriction category, we say that parallel morphisms f,g: A — B are disjoint if fog = 0a,4-

Lemma 19. In a restriction category, the following hold:
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(i) All disjoint morphisms are restriction compatible,
(i) g — g and f— f' implies go f — ¢’ o f' when dom(g) = cod(f), and
(iii) go f = go f o f when dom(g) = cod(f).

ProOF. For (i), suppose f,g: A — B are disjoint, i.e., fog = 04_4. Then

gof=gogof=gofog=go0aa=0ap=/folaa=fofog=fog
Part (ii) was shown by Guo [19, Lemma 3.1.3]. For (iii) we have go f = go fo f =go fo f, as desired. [J

This lemma allows us to show that all join inverse categories are traced monoidal categories with a
uniform trace.

Theorem 20. Every inverse category with countable joins and a disjointness tensor has a uniform trace.

PrOOF. By Theorem [I8] it suffices to show that all morphisms of the forms fi1 or fa1 o f35 o fi2 for any
n € Nand some f: X @U — Y & U are pairwise inverse compatible. We notice that

(fij) = (pjofou) Z(H;r‘ofoﬂz'ﬂZHjOfTOH}TZHZTOfTOHjZ(fT)ji
and so (f11)" = (f7)11 and

(fa10 fh 0 fi2)t = (f12)T o (f32) T o (1) = (F )21 o (f1)" 0 (F )12

so it suffices to show only restriction compatibility, since the restriction compatibility of the partial inverses
will follow directly by this symmetry.
To see that f11 — fo1 0 f2k2 o f12 for some k € N, notice that f;; = HJ{ o foll; and

for0 f5y0 fio = for0 fayoll} o foll;

so it suffices by Lemma [19|to show that II} — fo; o f3 o IT}. But then
foro f8y o Mo I} = for o f3 o I} o Iy o 1] = Oyguveu

since HI =1II; 0 HI =1y ® Op,y and Il = 115 o H; = Oy,y @ 1y, so these are restriction compatible by
Lemma

To see that fo1 0 f33 0 f12 — fa1 0 f35 o f12, assume without loss of generality that m < n (the case where
m = n is trivial). Once again, by Lemma it suffices to show fa; — fa1 0 f35 ™. But since

f21=HJ{0f0H2

and
far0 fi™ = far o (Il o f o Tly) ™™~ o 1T} o f o I,

restriction compatibility follows by analogous argument to the previous case. O

Recall that a f-category with a trace is said to have a {-trace (see, e.g., [43]) if Tr)U(’Y(f)T = TrgyX(fT)
for every morphism f: X U - Y & U.

Theorem 21. The canonical trace in an inverse category with countable joins and a disjointness tensor is a
t-trace.
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Proor. To see that the trace induced by Theorems and is a f-trace, let f: XU =Y ®U be a
morphism of 6.

In the proof of Theorem we noticed that (fi;)T = (f1);; and (fa1 0 fiyo f12)T = (fT)a1 0 (i) o (fN)1a.
Expanding this in the definition of the canonical trace given by Theorem [I8] we get

T T
Ty () = (fu + > faro fapo f12> = <f11 v/ faro fio f12>

new new

;
=(fi)tv (\/ far0 fi0 f12> =(A)TV \/ (fi2)T o (f55)T o (fa1)'
new new

= (N v\ (FNar o (FN)5 0 (F1)12 = ToY (1)

new

by definition of the partial sum as join (Lemma, and by (erF Ht= \/feF fT by Lemma @ O

5.1. Applications in models of reversible functional programming

This final theorem is highly relevant to modelling Theseus in join inverse categories, as the iteration
label-approach to reversible tail recursion (exemplified in the parity program in Figure [2]) is equivalent to the
existence of a f-trace operator. This can be observed from the fact that we are not only able to provide a
forward and backward semantics to functions with iteration labels via a {-trace [I5] (see also the discussion
in Section , but that it is also possible to express a f-trace operator as a parametrized function (which, in
turn, can be naturally regarded categorically as a morphism scheme) in Theseus [15].

To give a concrete example, consider the recursive parity function in Theseus from Figure 2 To give
semantics to its recursive behaviour using a j-trace, we systematically transform from a function of type
Nat x Bool <+ Nat x Bool with an internal iteration label of type Nat x Nat x Bool <> Nat x Nat x Bool into
a function of type (Nat x Bool) + (Nat x Nat x Bool) +» (Nat x Bool) + (Nat x Nat x Bool) by prefacing
patterns for the outer (parity) function by Left, replacing patterns for the inner (iteration label) function by
Right-patterns, replacing calls to the inner function by Right-expressions, and prefacing return values by
Left-expressions, as in the following;:

parity :: Nat X Bool ++ Nat x Bool parity’ :: (Nat x Bool) + (Nat x Nat x Bool) +
| (n,b) < iter (n,0,b) (Nat x Bool) + (Nat x Nat x Bool)
| dter (Succ m,m,b) <> iter (n,Succ m,not b) - |  Left (n,b) < Right (n,0,b)
| iter (0,m,b) < (m,b) |  Right (Succ n,m,b) < Right (n,Succ m,not b)
where iter :: Nat x Nat x Bool <+ |  Right (0,m,b) < Left (m,b)

Nat x Nat x Bool

Notice that this transformation preserves non-overlapping and exhaustive patterns, as are required of Theseus
functions. In this way, we can obtain the denotation of the original parity function by taking the -trace of
the denotation of the transformed parity’ function.

6. Conclusion

We have shown that inverse categories with countable joins carry with them a few key properties that
are highly useful for modelling partial reversible functional programming. Notably, we have shown that
any inverse category with countable joins is DCPO-enriched — from this view, we gathered that morphism
schemes have fixed points, and that the partial inverses of such fixed points can be computed as fixed points
of adjoint morphism schemes. This gave us a model of recursion a la RFUN.

Further, we were able to show that any inverse category can be embedded in an inverse category with
joins, in which all join restriction functors have canonical fixed points. Finally, we showed that the presence
of a join-preserving disjointness tensor on an inverse category with countable joins gives us a strong unique
decomposition category, and in turn, a uniform f-trace: a model of recursion & la Theseus and II°.
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Restriction categories have recently been considered as enriched categories by Cockett & Garner [47],
though their approach relied on enrichments based on weak double categories rather than monoidal categories,
as it is otherwise usually done (including in this paper). Further, fixed points in categories with a notion of
partiality have previously been considered, notably by Fiore [48] who also relied on order-enrichment, though
his work was in categories of partial maps directly. Finally, Giles [I8] has shown the construction of a trace
in inverse categories recently, relying instead on the presence of countable disjoint sums rather than joins
(whether or not this approach leads to a {-trace is unspecified). It should also be noted that the trace in the
canonical inverse category PInj has been studied independently of unique decomposition and restriction
categories, notably by Hines [44] and Abramsky, Haghverdi, and Scott [45].

As regards future work, since an inverse category with countable joins and a disjointness tensor is f-traced,
it can be embedded in a {-compact closed category via the Int-construction [38] [49]. It may be of interest to
consider {-compact closed categories generated in this manner, as we suspect these will be inverse categories
as well (notably, Int(PInj) is [44]) — and could provide, e.g., an alternative treatment of projectors as
restriction idempotents, and isometries as restriction monics (see also [50]).

Additionally, while our focus in this article has been on inverse categories, we conjecture that many of
these results can be generalized to restriction categories.
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