
JOIN INVERSE RIG CATEGORIES FOR REVERSIBLE
FUNCTIONAL PROGRAMMING, AND BEYOND

MFPS XXXVII

Robin Kaarsgaard† Mathys Rennela‡

September 1, 2021

† School of Informatics, University of Edinburgh
robin.kaarsgaard@ed.ac.uk

‡ INRIA Paris
mathys.rennela@inria.fr

mailto:robin.kaarsgaard@ed.ac.uk
mailto:mathys.rennela@inria.fr


REVERSIBLE?

X X

Reversible computation is the study of forward and backward deterministic
computation.

As a consequence, reversible computations are invertible.

1



RFUN: REVERSIBLE FUNCTIONAL PROGRAMMING20 T. Yokoyama, H.B. Axelsen, and R. Glück

fib n ! case n of

Z → ⟨S(Z), S(Z)⟩
S(m) → let ⟨x, y⟩ = fib m in

let z = plus ⟨y, x⟩ in z

(12)

plus ⟨x, y⟩ ! case y of

Z → ⌊⟨x⟩⌋
S(u) → let ⟨x′, u′⟩ = plus ⟨x, u⟩ in ⟨x′, S(u′)⟩

(13)

Fig. 4. Fibonacci-pair function fib and addition plus⟨x, y⟩ = ⟨x, x+ y⟩2

Because of the symmetric semantics of case-expressions, we can compute the
increment function from above both forward and backward:

{n !→ Z} ⊢q inc n ↪→ S(Z) (11)

where q is a program which includes the function definition of inc in Eq. 1.
Without the symmetric first-match policy, the value S(Z) could be a consequence
of two different instances of the CaseExp rule because S(Z) matches both of the
underlined left-expressions S(Z) and S(n′′), and we would thus have to search
deeper in the derivation tree to decide which was the right instance. However,
the policy ensures that inverse interpretation is locally deterministic and, in this
example, selects the first branch and never the second.

If a function terminates with an output for a given input, inverse computation
of the function terminates for that output and returns the original input, and
vice versa.

Example program. Given a number n, the Fibonacci-pair function [9] com-
putes a tuple containing the (n + 1)-th and (n + 2)-th Fibonacci number. The
functions fib and plus are defined for Peano numbers in Fig. 4. Note the use of
the ⌊·⌋-operator on the right-hand side of the first branch of plus to duplicate
x in forward computation and to check equality of a pair of values in backward
computation. We can relate numbers to the corresponding Fibonacci pairs via
an expression judgment. For example, for the second pair we have:

{n !→ S(S(Z))} ⊢q fib n ↪→ ⟨S(S(Z)), S(S(S(Z)))⟩ (14)

2.4 Reversibility and Semantics

In this section, we show in what sense the functional language defined above
is reversible. We first examine the matching operation (left-expression judg-
ments) and then continue with the rules of the operational semantics (expression
judgments).

2 For simplicity, x+ y represents the Peano number for the sum of x and y.

(Here, fib computes Fibonacci pairs while plus computes 〈x, y〉 7→ 〈x, x+ y〉.)

Untyped firstorder reversible functional programming language with data in
the form of LISPstyle symbols and constructors (sexpressions).

Symmetric first match policy: Branches are tested in order given, but leaves of
a branch must not match those produced by any branch above it.

Patterns are linear and variables must be used linearly as well (exactly once).

Duplication/equality: b〈x〉c = 〈x, x〉, b〈x, x〉c = 〈x〉, b〈x, y〉c = 〈x, y〉
2



INVERSE AND RIG CATEGORIES

An inverse category is a category of partial isomorphisms.

In an inverse category, each morphism A
f−→ B is associated with a restriction

idempotent A f−→ A, thought of as a partial identity defined where f is defined,

and a partial inverse B f†

−→ A, such that

f† ◦ f = f and f ◦ f† = f† .

There are also some additional laws about restriction idempotents like
f ◦ f = f , f ◦ g = g ◦ f , and more.

Examples: PInj, PHom, any groupoid, Inv(C) for a restriction category C.

3



INVERSE AND RIG CATEGORIES

A rig category is a category equipped with two different symmetric monoidal
products, such that one distributes over the other (up to isomorphism), subject
to four pages worth of coherence conditions.

We usually write them as (⊗, I) and (⊕, O) by analogy with distributivity of
multiplication over addition.

An inverse rig category is an inverse category with a rig structure (further
satisfying some technical requirements, such as the presence of a natural
diagonal X ∆−→ X ⊗X subject to some equations).

Examples: PInj, Inv(C) for any distributive restriction category C (with
discrete restriction products).

Nonexamples: Nontrivial groupoids, PHom (but both due to the technical
conditions).

4



JOINS, BY EXAMPLE

Let f and g be partial injective functions A → B. Then f ∨ g exists if f and g

agree in their overlap in both the forward and backward directions: f(x) = g(x)

whenever f and g both defined at x, and same for f† and g†.

a 1

b 2

c 3

d 4

f

f

g

g

⇒

a 1

b 2

c 3

d 4

f∨g

f∨g

f∨g

Note that maps which are entirely disjoint (i.e., in both domain of definition
and image) are always compatible.

5



JOINS, ABSTRACTLY

An inverse category has joins if for all A f,g−−→ B with f ◦ g = g ◦ f and
f† ◦ g† = g† ◦ f†, f ∨ g exists (subject to some axioms).

An inverse category with joins of all sets of pairwise compatible morphisms is
called a join inverse category.

A functor of join inverse categories is a functor that preserves joins.

Specifically, in a join inverse rig category, ⊕ and ⊗ preserve joins.

But what are they good for?

6



MAN, THEY REALLY TIE THE SEMANTICS TOGETHER

7



MAN, THEY REALLY TIE THE SEMANTICS TOGETHER

They allow us to define morphisms piecemeal, and then glue the pieces together
to form the whole.

This is useful for

• recursively defined functions,

• case constructs,

• duplication/equality,

and more!

8



FUNDAMENTALS OF THE SEMANTICS

To construct an object of values, we assume that the following two fixed points
exist (see paper):

L(A) = µX.I ⊕ (A⊗X) T (A) = µX.A⊗ L(X)

We further assume that we’re given an object S of symbols. Then we construct
interpretations of

• open (left) expressions of n free variables as morphisms T (S)⊗n → T (S),

• patterns of n variables as morphisms T (S) → T (S)⊗n,

• functions as open expressions of a single free variable.

Note in particular that this encoding enforces the linear use of variables.

9



PATTERN MATCHING IS DUAL TO VALUE CONSTRUCTION

The interpretation of an open left expression can be seen as a value constructor:
They construct values by taking appropriate amount of values to fill out the
holes left by free variables.

In PInj, J〈x, y〉K = (v1, v2) 7→ 〈v1, v2〉

Notice that the partial inverse to this value constructor performs pattern
matching. Given a value v,

• if v = 〈v1, v2〉 then J〈x, y〉K†(v) = (v1, v2) (corresponding to binding x
to v1 and y to v2); and

• if v is not of this form then J〈x, y〉K†(v) is undefined.

For this reason, the interpretation of patterns is given by the partial inverse to
their interpretations as open left expressions.

10



CASE EXPRESSIONS

Finally, we use joins to construct the interpretation of case expressions.

To do this, we interpret branches as separate morphisms, and then glue them
together with joins.

Problem: How do we know that the resulting morphisms are compatible?
20 T. Yokoyama, H.B. Axelsen, and R. Glück

fib n ! case n of

Z → ⟨S(Z), S(Z)⟩
S(m) → let ⟨x, y⟩ = fib m in

let z = plus ⟨y, x⟩ in z

(12)

plus ⟨x, y⟩ ! case y of

Z → ⌊⟨x⟩⌋
S(u) → let ⟨x′, u′⟩ = plus ⟨x, u⟩ in ⟨x′, S(u′)⟩

(13)

Fig. 4. Fibonacci-pair function fib and addition plus⟨x, y⟩ = ⟨x, x+ y⟩2

Because of the symmetric semantics of case-expressions, we can compute the
increment function from above both forward and backward:

{n !→ Z} ⊢q inc n ↪→ S(Z) (11)

where q is a program which includes the function definition of inc in Eq. 1.
Without the symmetric first-match policy, the value S(Z) could be a consequence
of two different instances of the CaseExp rule because S(Z) matches both of the
underlined left-expressions S(Z) and S(n′′), and we would thus have to search
deeper in the derivation tree to decide which was the right instance. However,
the policy ensures that inverse interpretation is locally deterministic and, in this
example, selects the first branch and never the second.

If a function terminates with an output for a given input, inverse computation
of the function terminates for that output and returns the original input, and
vice versa.

Example program. Given a number n, the Fibonacci-pair function [9] com-
putes a tuple containing the (n + 1)-th and (n + 2)-th Fibonacci number. The
functions fib and plus are defined for Peano numbers in Fig. 4. Note the use of
the ⌊·⌋-operator on the right-hand side of the first branch of plus to duplicate
x in forward computation and to check equality of a pair of values in backward
computation. We can relate numbers to the corresponding Fibonacci pairs via
an expression judgment. For example, for the second pair we have:

{n !→ S(S(Z))} ⊢q fib n ↪→ ⟨S(S(Z)), S(S(S(Z)))⟩ (14)

2.4 Reversibility and Semantics

In this section, we show in what sense the functional language defined above
is reversible. We first examine the matching operation (left-expression judg-
ments) and then continue with the rules of the operational semantics (expression
judgments).

2 For simplicity, x+ y represents the Peano number for the sum of x and y.

The symmetric first match policy ensures compatibility, if we can ensure that
branches are tested in the given order.

11



DECIDABLE PATTERN MATCHING

When T (S)
JlK†−−→ T (S)⊗n is the interpretation of a pattern l, its restriction

idempotent JlK† is a partial identity defined only on values which match that
pattern.

To be able to enforce order in pattern matching, we need that all such restriction
idempotents have disjoint complements, satisfying JlK† ∨ JlK†⊥ = id.

We call this property decidable pattern matching, and we require it in order to
give semantics to case expressions with the symmetric first match policy.

12



CASE EXPRESSIONS, AGAIN

We give an interpretation of a case expression such as

case l of

l1 → e1

l2 → e2

l3 → e3

(ignoring l for now) branch by branch, as in

1. Je1K ◦ Jl1K† ∨

2. Je2K ◦ Jl2K† ◦ Jl1K†⊥ ∨

3. Je3K ◦ Jl3K† ◦ Jl2K†⊥ ◦ Jl1K†⊥
and so on.

Compare this to GramSchmidt orthogonalization.

13



...AND BEYOND

While the focus here is on a semantics for Rfun, our approach is powerful
enough to accomodate other languages. We rely on this theorem:

Theorem: Any join inverse category C with a disjointness tensor (specifically
any join inverse rig category) is equipped with a uniform dagger trace
C(A⊕ U,B ⊕ U) → C(A,B).

• Join inverse categories with a disjointness tensor, specifically join inverse
rig categories, form models of reversible flowcharts.

• Dagger traced ωcontinuous rig categories, including those join inverse rig
categories which are ωcomplete for join preserving functors, form models
of Π0 ⇒ Theseus.

14



CONCLUDING REMARKS

Reversible computing is a novel computing paradigm with applications in areas
such as lowpower computing, quantum computing, and even robotics.

Join inverse rig categories is a powerful framework for modelling reversible
programming languages.

Stay tuned for more reversible content this session!

15



Thank you!

16



DUPLICATION/EQUALITY

The interpretation of the duplication/equality operator is constructed as the
join of three disjoint morphisms T (S) → T (S).

1. One which sends the “unary tuple” 〈x〉 to the pair 〈x, x〉,
2. one which sends a pair of equal things 〈x, x〉 to 〈x〉, and

3. one which, when x 6= y, sends 〈x, y〉 to 〈x, y〉 unchanged.

The first is constructed using the natural diagonal T (S) ∆−→ T (S)⊗ T (S), and

the second by its partial inverse T (S)⊗ T (S)
∆†

−−→ T (S).

Notice that T (S)⊗ T (S)
∆†

−−→ T (S) is only defined on pairs of equal things,
so its restriction idempotent ∆† is a partial identity defined only on pairs of
equal values.

17



DECIDABLE EQUALITY

To construct the third map, we need a complement to this restriction
idempotent; a restriction idempotent

T (S)⊗ T (S)
∆†⊥

−−−→ T (S)⊗ T (S)

defined only on pairs of distinct values, i.e., satisfying ∆† ∨∆†⊥ = id. We call
this property decidable equality, and we require it in order to construct an
interpretation of duplication/equality.

18


