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Abstract. Reversible computation studies computations which exhibit
both forward and backward determinism. Among others, it has been
studied for half a century for its applications in low-power computing,
and forms the basis for quantum computing.
Though certified program equivalence is useful for a number of appli-
cations (e.g., certified compilation and optimization), little work on this
topic has been carried out for reversible programming languages. As a
notable exception, Carette and Sabry have studied the equivalences of
the finitary fragment of Πo, a reversible combinator calculus, yielding a
two-level calculus of type isomorphisms and equivalences between them.
In this paper, we extend the two-level calculus of finitary Πo to one
for full Πo (i.e., with both recursive types and iteration by means of a
trace combinator) using the delay monad, which can be regarded as a
“computability-aware” analogue of the usual maybe monad for partial-
ity. This yields a calculus of iterative (and possibly non-terminating)
reversible programs acting on user-defined dynamic data structures to-
gether with a calculus of certified program equivalences between these
programs.
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1 Introduction

Reversible computation is an emerging computation paradigm encompassing
computations that are not just deterministic when executed the forward direc-
tion, but also in the backward direction. While this may seem initially obscure,
reversible computation forms the basis for quantum computing, and has seen
applications in a number of different areas such as low-power computing [28],
robotics [30], discrete event simulation [33], and the simultaneous construction
of parser/pretty printer pairs [32]. Like classical computing, it has its own au-
tomata [4], circuit model [40], machine architectures [35], programming lan-
guages [21, 22, 41, 34, 20], semantic metalanguages [15, 25, 24], and so on.
⋆ Niccolò Veltri was supported by a research grant (13156) from VILLUM FONDEN.
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Πo is a family of reversible combinator calculi comprising structural iso-
morphisms and combinators corresponding to those found in dagger-traced ω-
continuous rig categories [26] (a kind of dagger category with a trace, monoidal
sums ⊕ and products ⊗ such that they form a rig structure, and fixed points of
the functors formed from the rig structure). Though superficially simple, Πo is
expressive enough as a metalanguage to give semantics to the typed reversible
functional programming language Theseus [22].

In [7], Carette and Sabry studied the equivalences of isomorphisms in the
finitary fragment of Πo (i.e., without recursive types and iteration via the trace
combinator), and showed that these equivalences could be adequately described
by another combinator calculus of equivalences of isomorphisms, in sum yielding
a two-level calculus of isomorphisms and equivalences of isomorphisms. In this
paper, we build on this work to produce a (fully formalized) two-level calculus
for full Πo (supporting both recursive types and iteration) via the delay monad,
using insights gained from the study of its Kleisli category [37, 8, 39], as well as
of join inverse categories in which reversible iteration may be modelled [25].

The full Πo calculus cannot be modelled in the same framework of [7], since
Martin-Löf type theory is a total language which in particular disallows the
specification of a trace operator on types. Consequently, it is necessary to move
to a setting supporting the existence of partial maps, and in type theory this
can be done by using monads, by considering partiality as an effect. Our choice
fell on the coinductive delay monad, introduced by Capretta [6] as a way of
representing general recursive functions in Martin-Löf type theory. The delay
datatype has been employed in a large number of applications, ranging from
operational semantics of functional languages [11] to formalization of domain
theory in type theory [5] and normalization by evaluation [1]. Here it is used for
giving denotational semantics to Πo. In particular, we show how to endow the
delay datatype with a trace combinator, whose construction factors through the
specification of a uniform iteration operator [17, 16].

The uniform iteration operator introduces a notion of feedback, typically used
to model control flow operations such as while loops. In the Kleisli category of the
delay monad, this operation can be intuitively described as follows: We can apply
a function f : A→ B+A on an input a : A and either produce an element b : B,
or produce a new element a′ : A which can be fed back to f . This operation can
be iterated, and it either terminates returning a value in B or it goes on forever
without producing any output. This form of iteration is “unguarded” because
it allows the possibility of divergence. The trace operator can then be seen as a
particular form of iteration where, given a function f : A+ C → B + C, which
can be decomposed as fL : A→ B+C and fR : C → B+C, we first apply fL on
an input a : A, and, if the latter operation produces a value c : C, we continue
by iterating fR on c. Notice that the notion of trace can be generally defined
in monoidal categories where the monoidal structure is not necessarily given by
coproducts, and it has been used to model other things besides iteration, such
as partial traces in vector spaces [23], though this use falls outside of the scope
of this paper.
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Throughout the paper, we reason constructively in Martin-Löf type theory.
Classically, the delay monad (quotiented by weak bisimilarity) is isomorphic to
the maybe monad MaybeX = X +1, and thus just a complication of something
that can be expressed much simpler. Constructively, however, they are very
different. In particular, it is impossible to define a well-behaved trace combinator
for the maybe monad without assuming classical principles such as the limited
principle of omniscience.

We have fully formalized the development of the paper in the dependently
typed programming language Agda [31]. The code is available online at
https://github.com/niccoloveltri/pi0-agda. The formalization uses Agda
2.6.0.

Overview In Section 2, we present the syntax of Πo as formalized in Agda, with
particular emphasis on recursive types and the trace operator. In Section 3, we
recall the definition of Capretta’s delay datatype and weak bisimilarity. We dis-
cuss finite products and coproducts in the Kleisli category of the delay monad
and we introduce the category of partial isomorphisms that serves as the deno-
tational model of Πo. In Section 4, we build a complete Elgot monad structure
on the delay datatype, that allows the encoding of a dagger trace operator in
the category of partial isomorphisms. In Section 5, we formally describe the in-
terpretation of Πo types, terms and terms equivalences. We conclude in Section
6 with some final remarks and discussion on future work.

The type-theoretical framework Our work is settled in Martin-Löf type theory
with inductive and coinductive types. We write (a : A) → B a for dependent
function spaces and (a : A) × B a for dependent products. We allow dependent
functions to have implicit arguments and indicate implicit argument positions
with curly brackets (as in Agda). We use the symbol = for definitional equality
of terms and ≡ for propositional equality. Given f : A → C and g : B → C,
we write [f, g] : A + B → C for their copairing. The coproduct injections are
denoted inl and inr. Given h : C → A and k : C → B, we write ⟨h, k⟩ : C → A×B
for their pairing. The product projections are denoted fst and snd. The empty
type is 0 and the unit type is 1. We write Set for the category of types and
functions between them. We also use Set to denote the universe of types. We
define A↔ B = (A→ B)× (B → A).

We do not assume uniqueness of identity proofs (UIP), i.e. we do not consider
two proofs of x ≡ y necessarily equal. Agda natively supports UIP, so we have
to manually switch it off using the without-K option.

In Section 3, we will need to quotient a certain type by an equivalence rela-
tion. Martin-Löf type theory does not support quotient types, but quotients can
be simulated using setoids [3]. Alternatively, we can consider extensions of type
theory with quotient types à la Hofmann [19], such as homotopy type theory
[36]. Setoids and quotient types à la Hofmann are not generally equivalent ap-
proaches, but they are indeed equivalent for the constructions we develop in this
work. Therefore, in the rest of the paper we assume the existence of quotient
types and we refrain from technical discussions on their implementation.
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2 Syntax of Πo

In this section, we present the syntax of Πo. The 1-structure of Πo, i.e. its types
and terms, has originally been introduced by James and Sabry [21]. In particular,
we include the presence of recursive types and a primitive trace combinator.
Following Carette and Sabry’s formalization of the finitary fragment of Πo, we
consider a collection of equivalences between terms. Our list of axioms notably
differs from theirs in that we do not require each term to be a total isomorphism,
we ask only for the existence of a partial inverse.

Formally, the collection of types of Πo correspond to those naturally inter-
preted in dagger traced ω-continuous rig categories (see [26]).

2.1 Types

The types of Πo are given by the grammar:

A ::= Z |A⊕A | I |A⊗A |X |µX.A

where X ranges over a set of variables. In Agda, we use de Bruijn indexes
to deal with type variables, so the grammar above is formally realized by the
rules in Figure 1. The type Ty n represents Πo types containing at most n free
variables. Variables themselves are encoded as elements of Finn, the type of
natural numbers strictly smaller then n. The type constructor µ binds a variable,
which, for A : Ty (n+ 1), we consider to be n+ 1.

It is also necessary to define substitutions. In Agda, given types A : Ty (n+1)
and B : Ty n, we construct subAB : Ty n to represent the substituted type
A[B/X], where X corresponds to the (n+ 1)-th variable in context.

Z : Tyn I : Tyn
i : Finn

Var i : Tyn

A : Tyn B : Tyn

A⊕B : Tyn

A : Tyn B : Tyn

A⊗B : Tyn

A : Ty (n+ 1)

µA : Tyn

Fig. 1. Types of Πo, as formalized in Agda

2.2 Terms

The terms of Πo are inductively generated by the rules in Figure 2. They include
the identity programs id and sequential composition of programs •. (Z,⊕) is a
symmetric monoidal structure, with terms λ⊕, α⊕ and σ⊕ as structural mor-
phisms. Similarly for (I,⊗). Moreover ⊗ distributes over Z and ⊕ from the right,
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as evidenced by κ and δ. Elements of µX.A are built using the term constructor
fold and destructed with unfold. Finally, we find the trace combinator.

Every Πo program is reversible. The (partial) inverse of a program is given
by the function dagger : (A←→ B)→ (B ←→ A), recursively defined as follows:

dagger id = id dagger (g • f) = dagger f • dagger g
dagger (f ⊕ g) = dagger f ⊕ dagger g dagger (f ⊗ g) = dagger f ⊗ dagger g
dagger λ−1⊕ = λ⊕ dagger λ⊕ = λ−1⊕
dagger σ⊕ = σ⊕ daggerα⊕ = α−1⊕
daggerα−1⊕ = α⊕ dagger λ⊗ = λ−1⊗
dagger λ−1⊗ = λ⊗ dagger σ⊗ = σ⊗
daggerα⊗ = α−1⊗ daggerα−1⊗ = α⊗
dagger κ = κ−1 dagger κ−1 = κ
dagger δ = δ−1 dagger δ−1 = δ
dagger fold = unfold dagger unfold = fold
dagger (trace f) = trace (dagger f)

The dagger operation is involutive. Notice that this property holds up to
propositional equality. This is proved by induction on the term f .

daggerInvol : (f : A←→ B)→ dagger (dagger f) ≡ f

The right unitor for ⊕ is given by ρ⊕ = λ⊕ • σ⊕ : A ⊕ Z ←→ A, and ρ⊗ is
defined similarly. Analogously, we can derive the left distributors κ′ : A⊗Z←→ A
and δ′ : A⊗ (B ⊕ C)←→ (A⊗B)⊕ (A⊗ C).

2.3 Term Equivalences

A selection of term equivalences of Πo is given in Figure 3. We only include the
equivalences that either differ or have not previously considered by Carette and
Sabry in their formalization of the finite fragment of Πo [7]. In particular, we
leave out the long list of Laplaza’s coherence axioms expressing that types and
terms of Πo form a rig category [29]. We also omit the equivalences stating that
λ−1⊕ is the total inverse of λ⊕, similarly for the other structural morphisms.

The list of term equivalences in Figure 3 contains the trace axioms, displaying
that the types of Πo form a traced monoidal category wrt. the additive monoidal
structure (Z,⊕) [23]. Next we ask for trace (dagger f) to be the partial inverse of
trace f . Remember that we have defined dagger (trace f) to be trace (dagger f), so
the axiom tracePIso is evidence that the trace combinator of Πo is a dagger trace.
Afterwards we have two equivalences stating that unfold is the total inverse of
fold.

It is possible to show that every term f has dagger f as its partial inverse.
The notion of partial inverse used here comes from the study of inverse cate-
gories (see [27]) and amounts to saying that dagger f is the unique map that
undoes everything which f does (unicity of partial inverses follows by the final
equivalence of Figure 3, see [27]). Note that this is different from requiring that
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id : A←→ A

g : B ←→ C f : A←→ B

g • f : A←→ C

f : A←→ C g : B ←→ D

f ⊕ g : A⊕B ←→ C ⊕D

f : A←→ C g : B ←→ D

f ⊗ g : A⊗B ←→ C ⊗D

λ⊕ : Z⊕A←→ A λ−1
⊕ : A←→ Z⊕A

λ⊗ : I⊗A←→ A λ−1
⊗ : A←→ I⊗A

α⊕ : (A⊕B)⊕ C ←→ A⊕ (B ⊕ C) α−1
⊕ : A⊕ (B ⊕ C)←→ (A⊕B)⊕ C

α⊗ : (A⊗B)⊗ C ←→ A⊗ (B ⊗ C) α−1
⊗ : A⊗ (B ⊗ C)←→ (A⊗B)⊗ C

σ⊕ : A⊕B ←→ B ⊕A σ⊗ : A⊗B ←→ B ⊗A

κ : Z⊗A←→ Z δ : (A⊕B)⊗ C ←→ (A⊗ C)⊕ (B ⊗ C)

κ−1 : Z←→ Z⊗A δ−1 : (A⊗ C)⊕ (B ⊗ C)←→ (A⊕B)⊗ C

fold : A[µX.A/X]←→ µX.A unfold : µX.A←→ A[µX.A/X]

f : A⊕ C ←→ B ⊕ C

trace f : A←→ B

Fig. 2. Terms of Πo

f is an isomorphism in the usual sense, as dagger f • f is not going to be the
identity when f is only partially defined, though it will behave as the identity
on all points where f is defined.

The proof that every term has dagger f as its partial inverse proceeds by
induction on f .

existsPIso : (f : A←→ B)→ f • dagger f • f ⇐⇒ f

3 Delay Monad

The coinductive delay datatype was first introduce by Capretta for representing
general recursive functions in Martin-Löf type theory [6]. Given a type A, ele-
ments of DelayA are possibly non-terminating “computations” returning a value
of A whenever they terminate. Formally, DelayA is defined as a coinductive type
with the following introduction rules:

a : A
now a : DelayA

x : DelayA

later x : DelayA

The constructor now embeds A into DelayA, so now a represents the terminat-
ing computation returning the value a. The constructor later adds an additional
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naturalityL : f • trace g ⇐⇒ trace ((f ⊕ id) • g)

naturalityR : trace g • f ⇐⇒ trace (g • (f ⊕ id))

dinaturality : trace ((id⊕ f) • g) ⇐⇒ trace (g • (id⊕ f))

superposing : trace (α−1
⊕ • (id⊕ f) • α⊕) ⇐⇒ id⊕ trace f

vanishing⊕ : trace f ⇐⇒ trace (trace (α−1
⊕ • f • α⊕))

vanishingZ : f ⇐⇒ ρ−1
⊕ • trace f • ρ⊕ yanking : traceσ⊕ ⇐⇒ id

tracePIso : trace f • trace (dagger f) • trace f ⇐⇒ trace f

foldIso : fold • unfold ⇐⇒ id unfoldIso : unfold • fold ⇐⇒ id

uniquePIso : f • dagger f • g • dagger g ⇐⇒ g • dagger g • f • dagger f

Fig. 3. Selection of term equivalences of Πo

unit of time delay to a computation. Double rule lines refer to a coinductive
constructor, which can be employed an infinite number of times in the construc-
tion of a term of type DelayA. E.g., the non-terminating computation never is
corecursively defined as never = later never.

The delay datatype is a monad. The unit is the constructor now, while the
Kleisli extension bind is corecursively defined as follows:

bind : (A→ DelayB)→ DelayA→ DelayB

bind f (now a) = f a

bind f (later x) = later (bind f x)

The delay monad, like any other monad on Set, has a unique strength operation
which we denote by str : A×DelayB → Delay (A×B). Similarly, it has a unique
costrength operation costr : (DelayA)× B → Delay (A× B) definable using str.
Moreover, the delay datatype is a commutative monad.

The Kleisli category of the delay monad, that we call D, has types as objects
and functions f : A → DelayB as morphisms between A and B. In D, the
identity map on an object A is the constructor now, while the composition of
morphisms f : A→ DelayB and g : B → DelayC is given by f ⋄ g = bind f ◦ g.

The delay datatype allows us to program with partial functions, but the
introduced notion of partiality is intensional, in the sense that computations
terminating with the same value in a different number of steps are considered
different. To obtain an extensional notion of partiality, which in particular allows
the specification of a well-behaved trace operator, we introduce the notion of
(termination-sensitive) weak bisimilarity.

Weak bisimilarity is defined in terms of convergence. A computation x :
DelayA converges to a : A if it terminates in a finite number of steps returning
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the value a. When this happens, we write x ↓ a. The relation ↓ is inductively
defined by the rules:

now a ↓ a
x ↓ a

later x ↓ a

Two computations in DelayA are weakly bisimilar if they differ by a finite num-
ber of applications of the constructor later. Alternatively, we can say that two
computations x and y are weakly bisimilar if, whenever x terminates returning a
value a, then y also terminates returning a, and vice versa. This informal state-
ment can be formalized in several different but logically equivalent ways [8, 39].
Here we consider a coinductive formulation employed e.g. in [12].

now≈ : now a ≈ now a

p : x1 ≈ x2

later≈ p : later x1 ≈ later x2

p : x ≈ now a

laterL≈ p : later x ≈ now a

p : now a ≈ x

laterR≈ p : now a ≈ later x

(1)

Notice that the constructor later≈ is coinductive. This allows us to prove never ≈
never. Weak bisimilarity is an equivalence relation and it is a congruence w.r.t.
the later operation. For example, here is a proof that weak bisimilarity is reflexive.

refl≈ : {x : DelayA} → x ≈ x

refl≈ {now a} = now≈

refl≈ {later x} = later≈ (refl≈ {x})

We call D≈ the category D with homsets quotiented by pointwise weak
bisimilarity. This means that in D≈ two morphisms f and g are considered
equal whenever f a ≈ g a, for all inputs a. When this is the case, we also write
f ≈ g. The operation bind is compatible with weak bisimilarity, in the sense that
bind f1 x1 ≈ bind f2 x2 whenever f1 ≈ f2 and x1 ≈ x2.

As an alternative to quotienting the homsets of D, we could have quotiented
the delay datatype by weak bisimilarity: Delay≈A = DelayA/≈. In previous
work [8], we showed that this construction has problematic consequences if we
employ Hofmann’s approach to quotient types [19]. For example, it does not seem
possible to lift the monad structure of Delay to Delay≈ without postulating ad-
ditional principles such as the axiom of countable choice. More fundamentally
for this work, countable choice would be needed for modelling the trace operator
of Πo in the Kleisli category of Delay≈. Notice that, if the setoid approach to
quotienting is employed, the latter constructions go through without the need
for additional assumptions. In order to keep an agnostic perspective on quotient
types and avoid the need for disputable semi-classical choice principles, we de-
cided to quotient the homsets of D by (pointwise) weak bisimilarity instead of
the objects of D.
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3.1 Finite Products and Coproducts

Colimits in D≈ are inherited from Set. This means that 0 is also the initial
object of D≈, similarly A+B is the binary coproduct of A and B in D≈. Given
f : A→ DelayC and g : B → DelayC, their copairing is [f, g]D = [f, g] : A+B →
DelayC. The operation [−,−]D is compatible with weak bisimilarity, in the sense
that [f1, g1]D ≈ [f2, g2]D whenever f1 ≈ f2 and g1 ≈ g2. The coproduct injections
are given by inlD = now ◦ inl : A → Delay (A + B) and inrD = now ◦ inr : B →
Delay (A+B).

Just as limits in Set do not lift to limits in the category Par of sets and partial
functions, they do not lift to D≈ either. This is not an issue with these concrete
formulations of partiality, but rather with the interaction of partiality (in the
sense of restriction categories, a kind of categories of partial maps) and limits
in general (see [10, Section 4.4]). In particular, 1 is not the terminal object
and A × B is not the binary product of A and B in D≈. In fact, 0 is (also)
the terminal object, with λ_. never : A → Delay 0 as the terminal morphism.
Nevertheless, it is possible to prove that 1 and × are partial terminal object
and partial binary products respectively, in the sense of Cockett and Lack’s
restriction categories [9, 10]. Here we refrain from making the latter statement
formal. We only show the construction of the partial pairing operation, which we
employ in the interpretation of Πo. Given f : C → DelayA and g : C → DelayB,
we define:

⟨f, g⟩D : C → Delay (A×B)

⟨f, g⟩D = costr ⋄ (str ◦ ⟨f, g⟩)

Since the delay monad is commutative, the function ⟨f, g⟩D is equal to str⋄(costr◦
⟨f, g⟩). The operation ⟨−,−⟩D is compatible with weak bisimilarity.

3.2 Partial Isomorphisms

In order to model the reversible programs of Πo, we need to consider reversible
computations in D≈. Given a morphism f : A → DelayB, we say that it is a
partial isomorphism if the following type is inhabited:

isPartialIso f = (g : B → DelayA)× ((a : A)(b : B)→ f a ↓ b↔ g b ↓ a)

In other words, f is a partial isomorphism if there exists a morphism g : B →
DelayA such that, if f a terminates returning a value b, then g b terminates
returning a, and vice versa. Given a partial isomorphism f , we denote its partial
inverse by daggerD f .

In D≈, our definition of partial isomorphisms is equivalent to the standard
categorical one [27] (see also [9]), which, translated in our type-theoretical set-
ting, is

isPartialIsoCat f = (g : B → DelayA)× f ⋄ g ⋄ f ≈ f × g ⋄ f ⋄ g ≈ g
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We denote A ≃ B the type of partial isomorphisms between A and B:

A ≃ B = (f : A→ DelayB)× isPartialIso f

We call InvD≈ the subcategory of D≈ consisting of (equivalence classes of) partial
isomorphisms. Note that InvD≈ inherits neither partial products nor coproducts
of D≈, as the universal mapping property fails in both cases. However, it can be
shown that in the category InvD≈, 0 is a zero object, A + B is the disjointness
tensor product of A and B (in the sense of Giles [15]) with unit 0, and A×B a
monoidal product of A and B with unit 1 (though it is not an inverse product
in the sense of Giles [15], as that would imply decidable equality on all objects).
In particular, we can derive the following operations, modelling the Πo term
constructors ⊕ and ⊗:

×D≃ : A ≃ C → B ≃ D → A×B ≃ C ×D

+D≃ : A ≃ C → B ≃ D → A+B ≃ C +D

4 Elgot Iteration

A complete Elgot monad [16, 17] is a monad T whose Kleisli category supports
unguarded uniform iteration. More precisely3, a monad T is Elgot if there exists
an operation

iterT : (A→ T (B +A))→ A→ TB

satisfying the following axioms:

fixpoint : iterT f ≡ [ηT, iterT f ] ⋄T f

naturality : g ⋄T iterT f ≡ iterT ([Tinl ◦ g, η ◦ inr] ⋄T f)

codiagonal : iterT (iterT g) ≡ iterT (T[id, inr] ◦ g)

p : f ◦ h ≡ T(id+ h) ◦ g
uniformity p : iterT f ◦ h ≡ iterT g

where ηT is the unit of T and ⋄T denotes morphism composition in the Kleisli
category of T. The standard definition of uniform iteration operator includes the
dinaturality axiom, which has recently been discovered to be derivable from the
other laws [14, 16].

The delay monad is a complete Elgot monad for which the axioms holds
up to weak bisimilarity, not propositional equality. In other words, the category
D≈ can be endowed with a uniform iteration operator. The specification of the
3 Here we give the definition of complete Elgot monad on Set, but the definition of

complete Elgot monad makes sense in any category with finite coproducts.
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iteration operator relies on an auxiliary function iter′D corecursively defined as
follows:

iter′D : (A→ Delay (B +A))→ Delay (B +A)→ DelayB

iter′D f (now (inl b)) = now b

iter′D f (now (inr a)) = later (iter′D f (f a))

iter′D f (later x) = later (iter′D f x)

iterD : (A→ Delay (B +A))→ A→ DelayB

iterD f a = iter′D f (f a)

The definition above can be given the following intuitive explanation. If f a
does not terminate, then iterD f a does not terminate either. If f a terminates,
there are two possibilities: either f a converges to inl b, in which case iterD f a
terminates returning the value b; or f a converges to inr a′, in which case we
repeat the procedure by replacing a with a′. Notice that in the latter case we
also add one occurrence of later to the total computation time. This addition is
necessary for ensuring the productivity of the corecursively defined function iter′D.
In fact, by changing the second line of its specification to iter′D f (now (inr a)) =
iter′D f (fa) and taking f = inrD, we would have that iter′D f (now (inr a)) unfolds
indefinitely without producing any output. In Agda, such a definition would be
rightfully rejected by the termination checker.

The operation iterD is compatible with weak bisimilarity, which means that
iterD f1 ≈ iterD f2 whenever f1 ≈ f2.

As mentioned above, iterD satisfies the Elgot iteration axioms only up to
weak bisimilarity. Here we show the proof of the fixpoint axiom, which in turns
relies on an auxiliary proof fixpoint′D.

fixpoint′D : (f : A→ Delay (B +A))→ bind [now, iterD f ]D ≈ iter′D f

fixpoint′D f (now (inl b)) = now≈

fixpoint′D f (now (inr a)) = laterR≈ refl≈

fixpoint′D f (later x) = later≈ (fixpoint′D f x)

fixpointD : (f : A→ Delay (B +A))→ [now, iterD f ]D ⋄ f ≈ iterD f

fixpointD f x = fixpoint′D f (f x)

4.1 Trace
From the Elgot iteration operator it is possible to derive a trace operator. First,
given f : A+B → C, we introduce fL = f ◦ inl : A→ C and fR = f ◦ inr : B → C,
so that f = [fL, fR]. Graphically:

f
C C

A B

fR
C

C
B

fL
C

A
B

C

B=
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The trace operator in D≈ is defined in terms of the iterator as follows:

traceD : (A+ C → Delay (B + C))→ A→ DelayB

traceD f = [now, iterD fR]D ⋄ fL

The operation traceD is compatible with weak bisimilarity. Graphically, we ex-
press the iterator on f as a wire looping back on the input, i.e., as

fA

A

B

In this way, the definition of traceD may be expressed graphically as

f
C C

A B

=
fL

C

A

B

fR

C

B

B

Intuitively, the function fL initialises the loop. It either diverges, so that the
trace of f diverges as well, or it terminates. It either terminates with an element
b : B, in which case the loop ends immediately returning b, or it converges to a
value c : C, and in this case we proceed by invoking the iteration of fR on c.

It is well-known that a trace operator is obtainable from an iteration operator,
as shown by Hasegawa [18]. His construction, instantiated to our setting, looks
as follows:

traceHD : (A+ C → Delay (B + C))→ A→ DelayB

traceHD f = iterD(Delay (id+ inr) ◦ f) ◦ inl

or graphically

f
C C

A B

=
f

C C

A B

A

It is not difficult to prove that the two possible ways of defining a trace oper-
ator from Elgot iteration are equivalent, in the sense that traceD f ≈ traceHD f
for all f : A+ C → Delay (B + C).

The trace axioms follow from the Elgot iteration axioms.
We conclude this section by remarking that the construction of a trace opera-

tor in the Kleisli category of the maybe monad is impossible without the assump-
tion of additional classical principles. In fact, given a map f : A+C → B+C+1,
let xs be the possibly infinite sequence of elements of B + C + 1 produced by
the iteration of f on a given input in A. In order to construct the trace of f ,
we need to decide whether xs is a finite sequence terminating with an element
of B + 1, or xs is an infinite stream of elements of C. This decision requires the
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limited principle of omniscience, an instance of the law of excluded middle not
provable in Martin-Löf type theory:

LPO = (s : N→ 2)→ ((n : N)× s n ≡ true) + ((n : N)→ s n ≡ false)

where 2 is the type of booleans, with true and false as only inhabitants.

4.2 Dagger Trace

We now move to show that traceD is a dagger trace operator, i.e. if f is a partial
isomorphism, then traceD f is also a partial isomorphism with partial inverse
traceD (daggerD f).

This is proved by introducing the notion of orbit of an element x : A+C wrt.
a function f : A+C → Delay (B+C). The orbit of x consists of the terms of type
B + C that are obtained in a finite number of steps from repeated applications
of the function f on x. Formally, a term y belongs to the orbit of f wrt. x if the
type Orb f x y is inhabited, with the latter type inductively defined as:

p : f x ↓ y
done p : Orb f x y

p : f x ↓ inr c q : Orb f (inr c) y

next p q : Orb f x y

The notion of orbit can be used to state when the iteration of a function
f : A→ Delay (B +A) on a input a : A terminates with value b : B.

iterD f a ↓ b↔ Orb [inlD, f ]D (inr a) (inl b)

We refer the interested reader to our Agda formalization for a complete proof of
this logical equivalence. Similarly, the orbit can be used to state when the trace
of a function f : A+C → Delay (B +C) on a input a : A terminates with value
b : B.

traceD f a ↓ b↔ Orb f (inl a) (inl b) (2)

Showing that traceD is a dagger trace operator requires the construction of
an inhabitant of traceD f a ↓ b ↔ traceD (daggerD f) b ↓ a. Thanks to the logical
equivalence in (2), this is equivalent to prove the following statement instead:

Orb f (inl a) (inl b)↔ Orb (daggerD f) (inl b) (inl a)

We give a detailed proof of the left-to-right direction, the other implication is
derived in an analogous way. Notice that a term p : Orb f (inl a) (inl b) can be seen
as a finite sequence of elements of C, precisely the intermediate values produced
by traceD f a before converging to b. The orbit of b wrt. the partial inverse of f
can therefore be computed by reversing the sequence of elements present in p.
The construction of the reverse of an orbit is very similar to the way the reverse
of a list is typically defined in a functional programming language like Haskell.
We first consider an intermediate value c : C and we assume to have already
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reversed the initial section of the orbit between inl a and inr c, that is a term
p′ : Orb (daggerD f) (inr c) (inl a).

reverseOrb′ : (i : {a : A}{b : B} → f a ↓ b→ daggerD f b ↓ a)→
{a : A}{b : B}{c : C} →
Orb f (inr c) (inl b)→ Orb (daggerD f) (inr c) (inl a)→
Orb (daggerD f) (inl b) (inl a)

reverseOrb′ i (done p) p′ = next (i p) p′

reverseOrb′ i (next p q) p′ = reverseOrb′ i q (next (i p) p′)

The proof of reverseOrb′ proceeds by structural induction on the final segment
of the orbit between inr c and inl b that still needs to be reversed, which is the
argument of type Orb f (inr c) (inl b). There are two possibilities.

– We have p : f (inr c) ↓ inl b, in which case i p : daggerD f (inl b) ↓ inl c. Then
we return next (i p) p′.

– There exists another value c′ : C such that p : f (inr c) ↓ inr c′ and q :
Orb f (inr c′) (inl b). Then we recursively invoke the function reverseOrb′ i on
arguments q and next (i p) p′ : Orb (daggerD f) (inr c′) (inl b).

The reverse of an orbit is derivable using the auxiliary function reverseOrb′.

reverseOrb : (i : {a : A}{b : B} → f a ↓ b→ daggerD f b ↓ a)→
{a : A}{b : B} →
Orb f (inl a) (inl b)→ Orb (daggerD f) (inl b) (inl a)

reverseOrb i (done p) = done (i p)

reverseOrb i (next p q) = reverseOrb′ i q (done (i p))

The proof of reverseOrb proceeds by structural induction on the orbit of type
Orb f (inl a) (inl b). There are two possibilities.

– We have p : f (inl a) ↓ inl b, in which case i p : daggerD f (inl b) ↓ inl a. Then
we return done (i p).

– There exists a value c : C such that p : f (inl a) ↓ inr c and q : Orb f (inr c) (inl b).
We conclude by invoking the function reverseOrb′ i on arguments q and
done (i p) : Orb (daggerD f) (inr c) (inl a).

Summing up, in this section we have showed that the traceD operator can be
restricted to act on partial isomorphisms. That is, the following type is inhabited:

traceD≃ : A+ C ≃ B + C → A ≃ B

5 Soundness

In this section, we provide some details on the interpretation of the syntax of
Πo, presented in Section 2, into the category InvD≈. Types of Πo are modelled as
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objects of InvD≈, which are types of the metatheory. In Agda, the interpretation
of types J−KTy takes in input a Πo type A : Ty n and an environment ρ : Finn→
Set giving semantics to each variable in context. The interpretation is mutually
inductively defined together with the operation J−Kµ giving semantics to the µ
type former. Remember that, given A : Ty (n+1) and B : Ty n, we write subAB
for the substituted type A[B/X], where X corresponds to the (n+1)-th variable
in context.

JZKTy ρ = 0JA⊕BKTy ρ = JAKTy ρ+ JBKTy ρJIKTy ρ = 1JA⊗BKTy ρ = JAKTy ρ× JBKTy ρJVar iKTy ρ = ρ iJµAKTy ρ = JAKµ ρ

x : JsubA (µA)KTy ρ
semFoldx : JAKµ ρ

By abuse of notation, we use here × (respectively +) to refer to the product
(respectively coproduct) in D≈ even though it fails to be a product (respectively
coproduct) in InvD≈. However, both of these are symmetric monoidal products
in InvD≈, so their use as objects of InvD≈ in the interpretation above is justified.

Terms of Πo are modelled as morphism of InvD≈, i.e. partial isomorphisms.
Here we only display the interpretation of a selection of programs, we refer
the interested reader to our Agda formalization for a complete definition of the
interpretation of terms.

J−K←→ : (A←→ B)→ JAKTy ρ ≃ JBKTy ρJf ⊕ gK←→ = JfK←→ +D≃ JgK←→Jf ⊗ gK←→ = JfK←→ ×D≃ JgK←→Jtrace fK←→ = traceD≃ JfK←→
Term equivalences of Πo are modelled as morphism equalities in InvD≈, i.e.

proofs of weak bisimilarity between two morphisms. Formally, we define an op-
eration: J−K⇐⇒ : (f ⇐⇒ g)→ JfK←→ ≈ JgK←→
Again we refer the interested reader to our Agda formalization for a complete
definition of the interpretation of term equivalences.

6 Conclusions

In this paper, we have extended the work of Carette and Sabry [7] to a (fully
formalized) two-level calculus of Πo programs and program equivalences. Key
in this effort was the use of the Kleisli category of the delay monad on Set
under weak bisimilarity, which turned out to support iteration via a trace that
preserves all partial isomorphisms, in this way giving semantics to the dagger
trace of Πo. Further, the work was formalized using Agda 2.6.0.

It is natural to wonder if our work can be ported to other monads of par-
tiality in Martin-Löf type theory. As already discussed in the end of Section
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4.1, the maybe monad is not suitable for modelling a well-behaved trace com-
binator without the assumption of classical principles such as LPO. The partial
map classifier [38, 13] PMCA = (P : Prop) → P → A, where Prop is the type
of propositions (types with at most one inhabitant), supports the existence of
a uniform iteration operator and therefore a trace. Nevertheless, the specifica-
tion of iteration is more complicated then the one presented in Section 4 for
the delay monad, which is a simple corecursive definition. The complete Elgot
monad structure of PMC follows from its Kleisli category being a join restriction
category, so iteration is defined in terms of least upper bounds of certain chains
of morphisms. The subcategory of partial isomorphisms of the Kleisli category
of PMC supports a dagger trace combinator, which can be proved following the
general strategy in [25]. The exact same observations apply to the partiality
monad in homotopy type theory [2, 8], to which the quotiented delay monad
Delay≈A = DelayA/≈ is isomorphic under the assumption of countable choice.

Though the Kleisli category of the delay monad on Set is well studied, com-
paratively less is known about this monad on other categories. It could be in-
teresting to study under which conditions its iterator exists – e.g., whether this
is still the case when Set is replaced with an arbitrary topos. Another avenue
concerns the study of time invertible programming languages: Though not im-
mediately clear in the current presentation, the trace on InvD≈ is not just re-
versible (in the sense that it preserves partial isomorphisms) but in fact time
invertible, in the sense that the number of computation steps needed to perform
traceD (daggerD f) is precisely the same as what is needed to perform traceD f on
any input. Since the delay monad conveniently allows the counting of compu-
tation steps, we conjecture that this is an ideal setting in which to study such
intentional semantics of reversible programming languages.
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