
QUANTUM INFORMATION EFFECTS

POPL 2022

Chris Heunen Robin Kaarsgaard

January 20, 2022

School of Informatics, University of Edinburgh

chris.heunen@ed.ac.uk
robin.kaarsgaard@ed.ac.uk

mailto:chris.heunen@ed.ac.uk
mailto:robin.kaarsgaard@ed.ac.uk

THE COST OF COMPUTATION

Time and space.
Usually not considered: information cost.

1

INFORMATION COST

inc :: int32 → int32 reset :: int32 → int32

inc n = n+ 1 reset n = 0

What is the information cost of inc and reset?

• Applying inc is free (input always recoverable from output).

• Applying reset costs 32 bits of information (input never recoverable from
output).

But we can’t see this in the type signatures.

2

CLASSICAL INFORMATION EFFECTS

Idea (James & Sabry, POPL ’12):

Classical computation = Classical reversible computation + information effects.

erase :: b⇝ 1 create :: 1⇝ b

Is there an analogous result for the quantum case?

3

QUANTUM MIXED STATES AND MEASUREMENT

Classical states: (1 0
0 0), (

0 0
0 1)

Probabilistic mix: e.g.,
(

1
4 0

0 3
4

)
,
(

1
2 0

0 1
2

)
.

Superposed quantum states: e.g.,
(

1
4

3
8

3
8

3
4

)
,
(

1
2

1
2

1
2

1
2

)
.

Measurement:

• Wave function collapse?

• The observer effect: (a b
c d) 7→ (a 0

0 d)

4

QUANTUM INFORMATION COST

not :: qubit → qubit measure :: qubit → qubit

not q = (0 1
1 0) q (

0 1
1 0) measure (a b

c d) = (a 0
0 d)

What is the information cost of not and measure?

• Applying not is free.

• Applying measure costs 1 qubit of quantum information.

The observer effect destroys quantum information!

5

QUANTUM INFORMATION EFFECTS

James & Sabry, POPL ’12: Classical computation is reversible computation
with information allocation and erasure.

Can we make sense of quantum measurement and the observer effect by similar
means?

• Is the observer effect a computational effect?

• Are pure states computationally pure?

6

QUANTUM INFORMATION EFFECTS

...and yes, they are!
7

QUANTUM INFORMATION EFFECTS

(i) Introduce UΠ (“yuppie”), a reversible quantum combinator language
(based on the classical combinator language Π).

(ii) Extend UΠ with allocation, yielding UΠa (“yuppiea”).

(iii) Extend UΠa with a hiding, yielding UΠχ
a (“yuppiechia”).

(iv) Argue that UΠχ
a can account for measurement.

8

UΠ: UNITARY Π

9

UΠ: UNITARY Π
2:6 Chris Heunen and Robin Kaarsgaard

Syntax
1 ::= 0 | 1 | 1 + 1 | 1 ⇥ 1 (base types)
C ::= 1 $ 1 (combinator types)
0 ::= id | swap+ | unit+ | uniti+ | assoc+ | associ+

| swap⇥ | unit⇥ | uniti⇥ | assoc⇥ | associ⇥

| distrib | distribi | distribo | distriboi (primitive combinators)
2 ::= 0 | 2 o

9 2 | 2 + 2 | 2 ⇥ 2 (combinators)

Typing rules
id : 1 $ 1 : id

swap+ : 11 + 12 $ 12 + 11 : swap+
unit+ : 1 + 0 $ 1 : uniti+
assoc+ : (11 + 12) + 13 $ 11 + (12 + 13) : associ+
swap⇥ : 11 ⇥ 12 $ 12 ⇥ 11 : swap⇥
unit⇥ : 1 ⇥ 1 $ 1 : uniti⇥
assoc⇥ : (11 ⇥ 12) ⇥ 13 $ 11 ⇥ (12 ⇥ 13) : associ⇥
distrib : 11 ⇥ (12 + 13) $ (11 ⇥ 12) + (11 ⇥ 13) : distribi
distribo : 1 ⇥ 0 $ 0 : distriboi

21 : 11 $ 12 22 : 12 $ 13
21 o

9 22 : 11 $ 13

21 : 11 $ 13 22 : 12 $ 14
21 + 22 : 11 + 12 $ 13 + 14

21 : 11 $ 13 22 : 12 $ 14
21 ⇥ 22 : 11 ⇥ 12 $ 13 ⇥ 14

Fig. 1. The syntax and type system of ⇧.

information e�ects of allocation and hiding to arrive at an arrow metalanguage which we prove
approximately universal for quantum channels, the canonical model of full quantum computation
(with measurement).

3.1 Reversible Classical Combinators: ⇧
The syntax and type system of the unextended calculus ⇧ is shown in Fig. 1. It comprises a small
set of invertible, �rst-order, strongly typed polymorphic combinators on data constructed from
(classical) sum and products types, as well as their units 0 and 1. These combinators enable data
of sum and product type to be swapped (sending inl G to inr G and vice versa for sums, and (G,~)
to (~, G) for products), reassociated, and have their respective units added and removed in the
usual way. Products can also be distributed over sums (and back again) as usual. Finally, these
combinators can be composed in sequence 21 o

9 22 and in parallel using both + and ⇥. That is, 21 ⇥ 22
takes a pair (G,~) and produces the pair (21 G, 22 G), while 21 + 22 takes inl G to inl (21G) and inr ~
to inr (22~).
Aside from the base combinators, a pair of useful derived combinators midswap+ : (11 + 12) +

(13 + 14) $ (11 + 13) + (12 + 14) and midswap⇥ : (11 ⇥ 12) ⇥ (13 ⇥ 14) $ (11 ⇥ 13) ⇥ (12 ⇥ 14) can
be de�ned as

midswap+ = assoc+ o
9 (id + associ+) o

9 (id + (swap+ + 83)) o
9 (id + assoc+) o

9 associ+

midswap⇥ = assoc⇥ o
9 (id ⇥ associ⇥) o

9 (id ⇥ (swap⇥ ⇥ 83)) o
9 (id ⇥ assoc⇥) o

9 associ⇥ .

The de�nition and use of derived combinators, which we will make heavy use of, should be taken
as no more than aliasing, or macro de�nition and expansion. Recursive systems (mutually or
otherwise) of derived combinators are not permitted.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 2. Publication date: January 2022.

10

UΠ: UNITARY Π

�antum Information E�ects 2:7

inv(id) = id inv(21 o
9 22) = inv(22) o

9 inv(21)
inv(21 + 22) = inv(21) + inv(22) inv(21 ⇥ 22) = inv(21) ⇥ inv(22)
inv(swap+) = swap+ inv(swap⇥) = swap⇥
inv(unit+) = uniti+ inv(uniti+) = unit+
inv(assoc+) = associ+ inv(associ+) = assoc+
inv(unit⇥) = uniti⇥ inv(uniti⇥) = unit⇥
inv(assoc⇥) = associ⇥ inv(associ⇥) = assoc⇥
inv(distrib) = distribi inv(distribi) = distrib
inv(distribo) = distriboi inv(distriboi) = distribo
inv(phasei) = phasei inv(hadamard) = hadamard

Fig. 2. The inversion meta-combinator inv in (U)⇧.

Syntax
0 ::= · · · | phasei | hadamard (primitive combinators)

Typing rules
phasei : 1 $ 1 : phasei

hadamard : 1 + 1 $ 1 + 1 : hadamard

Fig. 3. The syntax and typing rules ofU⇧ in addition to those in ⇧ (see Fig. 1).

be de�ned as

midswap+ = assoc+ o
9 (id + associ+) o

9 (id + (swap+ + 83)) o
9 (id + assoc+) o

9 associ+

midswap⇥ = assoc⇥ o
9 (id ⇥ associ⇥) o

9 (id ⇥ (swap⇥ ⇥ 83)) o
9 (id ⇥ assoc⇥) o

9 associ⇥ .

The de�nition and use of derived combinators, which we will make heavy use of, should be taken
as no more than aliasing, or macro de�nition and expansion. Recursive systems (mutually or
otherwise) of derived combinators are not permitted.

⇧ takes semantics in rig groupoids (see Section 4), the canonical choice being the category FinBij
of �nite sets and bijective functions. Indeed, ⇧ is universal for �nite bijective functions; Fig. 4
shows the implementations of the universal gate set {%- ,⇠#$) ,)$��$!� } [To�oli 1980].

Inversion. Our presentation of ⇧ di�ers slightly from [James and Sabry 2012]: our syntax does not
include an inversion combinator inv 2; instead we derive it as a metacombinator (in Fig. 2). This
avoids some super�uous syntax – e.g., inv(21 + 22) and (inv 21) + (inv 22) are equivalent, as are
inv(id) and id – but results in a higher number of base combinators. Some basic well-behavedness
properties can be straightforwardly shown by induction, summarised as follows.

P���������� 1. Let 2 be a (U)⇧ combinator. Then:
(i) 2 : 11 $ 12 implies inv(2) : 12 $ 11, and
(ii) inv(inv(2)) = 2 .

3.2 Reversible�antum Combinators: U⇧

U⇧ (“yuppie”) extends ⇧ with notions of phase and superposition, in the form of the phasei and
hadamard combinators. Fig. 3 shows the syntax and types of this small extension. While the types
of U⇧ remain the same as in ⇧, in U⇧ they are entirely quantum rather than (as in ⇧) entirely
classical. For example, where 1 + 1 in ⇧ is the type of bits, in U⇧ it is the type of qubits (with

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 2. Publication date: January 2022.

UΠ is Π extended with two distinctly quantum combinators, phaseφ and
hadamard .

All of these are unitaries: reversible quantum computations.

Theorem (Expressivity): UΠ is approximately universal for 2n × 2n unitaries.

11

UΠa: UΠ WITH ALLOCATION

�antum Information E�ects 2:9

px : Qbit $ Qbit py : Qbit $ Qbit pz : Qbit $ Qbit
px = swap+ py = swap+ o

9 (phase�8 + phase8) pz = id + phase�1

s : Qbit $ Qbit t : Qbit $ Qbit
s = id + phase8 t = id + phase

4
8c
4

ctrl 2 : 1 $ 1 ! Qbit ⇥ 1 $ Qbit ⇥ 1
ctrl 2 = swap⇥ o

9 distrib o
9 (unit⇥ + unit⇥) o

9 (id + 2) o
9 (uniti⇥ + uniti⇥) o

9 distribi o
9 swap⇥

cnot : Qbit2 $ Qbit2 to�oli : Qbit3 $ Qbit3 fredkin : Qbit3 $ Qbit3

cnot = ctrl px to�oli = ctrl cnot fredkin = ctrl swap⇥

Fig. 4. The implementation of a variety of quantum gates inU⇧. We use Qbit= as shorthand for the =-fold
product of the qubit type Qbit = 1 + 1 with itself.

Syntax
1 ::= 0 | 1 | 1 + 1 | 1 ⇥ 1 (base types)
C ::= 1 ⇢ 1 (combinator types)
2 ::= li� D (primitive combinators)

Typing rules
D : 11 + 13 $ 12
li� D : 11⇢ 12

Fig. 5. The syntax and type system of the arrow metalanguageU⇧0 .

3.3 �antum Combinators with Allocation: U⇧0

Next we extend U⇧ with an allocation e�ect alloc : 0⇢ 0, yielding the language of U⇧0 (“yuppie-
a”). This e�ect is introduced by letting combinators 11 ⇢ 12 in U⇧0 be given by invertible
combinators with a heap of type 13: that is, asU⇧ combinators of type 11 + 13 $ 12. Analogous to
[James and Sabry 2012], this enables the type system to track the information e�ects.
This small extension will allow us to de�ne a classical cloning combinator that clones classical

states exactly, and sends quantum states |k i to
p
|k i ⌦

p
|k i; this will be crucial later on in deriving

a combinator for measurement in U⇧j
0 .

U⇧0 canonically takes semantics in the category Isometry of Hilbert spaces and isometries: in
Section 4, we will see how a categorical model of U⇧ can be extended universally to model of
U⇧0 , and Section 5 shows how this construction connects the canonical model ofU⇧ to that of
U⇧0 . Now we show that the approximate universality theorem for U⇧ with its unitary semantics
extends to an approximate universality for U⇧0 with its semantics in isometries.
Fig. 5 gives an over view of U⇧0 . It is an arrow metalanguage [Hughes 2005; James and Sabry

2012; Power and Robinson 1997] built atop U⇧: it has the same base types as U⇧, but introduces
a new, irreversible combinator type 1 ⇢ 1 (re�ecting the fact that combinators in U⇧0 are no
longer invertible). All combinators in U⇧0 are constructed from combinators in U⇧ by means of
the single primitive li� combinator, following the type rule:

D : 11 + 13 $ 12
li� D : 11⇢ 12

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 2. Publication date: January 2022.

Extends UΠ with the ability to allocate from a hidden heap.

Allocation alloc : 0↣ b implemented as lifted left unitor:

(swap+ o
9 unit

+) : 0 + b ↔ b

lift(swap+; unit+) : 0↣ b

Extends to an arrow with choice over UΠ, allowing definition of arr ,≫, first ,
left , etc.

12

UΠa: UΠ WITH ALLOCATION

Using alloc and the other arrow combinators, we can further define a classical
cloning combinator clone : b↣ b× b.

All of these are isometries: (roughly) injective quantum computations.

Theorem (Expressivity): UΠa is approximately universal for 2n × 2m

isometries.

13

UΠχ
a : UΠ WITH HIDING AND ALLOCATION

14

UΠχ
a : UΠ WITH HIDING AND ALLOCATION

2:12 Chris Heunen and Robin Kaarsgaard

Syntax
1 ::= 0 | 1 | 1 + 1 | 1 ⇥ 1 (base types)
C ::= 1 1 (combinator types)
2 ::= li� E (primitive combinators)

Typing rules
E : 11⇢ 12 ⇥ 13 13 inhabited

li� E : 11 12

Fig. 6. The syntax and type system of the arrow metalanguage U⇧j
0 (rules for inhabitation appear in Fig. 5).

The hiding combinator allows projections fst : 11 ⇥ 12 11 and snd : 11 ⇥ 12 12 to be
de�ned. When combined with the classical cloning combinator inherited from U⇧0 , we show that
a combinator measure : 1 1 for measurement can be derived.

U⇧j
0 takes its canonical semantics in the categoryCPTP of Hilbert spaces and quantum channels,

and as withU⇧0 , we will show in Section 4 how a model ofU⇧0 can be extended to one ofU⇧j
0 by

a universal construction, connecting isometries to quantum channels (more on this in Section 5). We
also extend the approximate universality theorem ofU⇧0 to one showing approximate universality
ofU⇧j

0 combinators with respect to quantum channels.
Like U⇧0 , U⇧j

0 is an arrow metalanguage extending U⇧0 (see Fig. 6 for an overview). On the
surface, U⇧j

0 may look similar to if we were to apply the arrow construction from the classical
case [James and Sabry 2012] toU⇧, but the result would be quite di�erent. The arrow constructions
ofU⇧0 andU⇧j

0 are chosen precisely for their semantic properties (which we explore in Section 4),
and cannot be replaced without altering semantics. One tangible di�erence is in the treatment of
allocation: ML⇧ (of [James and Sabry 2012]) does not have a unit 0 for the sum (as that would lead
to an undesirable combinator of type 1 0), so allocation has type 1 1; on the other hand,
U⇧0 and U⇧j

0 have a unit 0 for the sum, and allocation has type 0 1.
Similarly to U⇧0 , U⇧j

0 uses the same base types as U⇧ and U⇧0 , but introduces a new
combinator type 1 1 to distinguishU⇧j

0 combinators at the type level. All combinators inU⇧j
0

are constructed from U⇧0 combinators using the single primitive li� combinator

E : 11⇢ 12 ⇥ 13 13 inhabited
li� E : 11 12

.

The de�nition of the arrow metacombinators arr , >>>, and �rst are bound to look very familiar, as
they are de�ned dually to those inU⇧0 (indeed, we will see in Section 4 that the two constructions
are dual in a formal sense). To turn a U⇧0 combinator 11 ⇢ 12 into a pure U⇧j

0 combinator
11 12 can be done by assigning it the trivial (and trivially inhabited) garbage of 1,

arr (E) = li� (E >>> uniti⇥) .

Combinators of type 11 12 and 12 13 with garbage of type 14 and 1 04 respectively can be
composed by

li� (E1) >>> li� (E2) = li� (E1 >>> (E2 ⇤⇤⇤ id) >>> assoc⇥)
resulting in a combinator with garbage 1 04⇥14. For the �nal arrow combinator �rst allowing parallel
execution of arrows, we de�ne 21 ⇤⇤⇤ 22 to simply run the underlying U⇧0 combinators in parallel
and swap the garbage into the right position as necessary,

li� (E1) ⇤⇤⇤ li� (E2) = li� ((E1 ⇤⇤⇤ E2) >>> midswap⇥) ,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 2. Publication date: January 2022.

Extends UΠa with the ability to discard information to a hidden garbage dump.

Implements discard : b⇝ 1 as inverse left unitor:

(uniti× o
9 swap

×) : b ↔ 1× b

lift(uniti× o
9 swap×) : b⇝ 1

As with UΠa, this extends to an arrow with choice.

15

UΠχ
a : UΠ WITH HIDING AND ALLOCATION

Using discard and the other combinators, we can derive (among other things)

• projections fst : b× b′ ⇝ b and snd : b× b′ ⇝ b′, and

• measurement measure : b⇝ b.

All of these are quantum channels: arbitrary quantum computations on mixed
states (CPTP maps).

Theorem (Expressivity): UΠχ
a is approximately universal for quantum

channels.

16

MEASUREMENT AND DECOHERENCE

measure = clone≫ fst

This aligns with the explanation of measurement offered by decoherence:

• clone prepares a new qubit, then applies (reversible) operations to
perfectly entangle our qubit with the newly prepared one; then

• when fst is applied, we forget one half of the prepared system, from which
point on it can be considered no different from any other part of the
environment.

This is a precisely a process for leaking information into the environment: no
“actual” wave function collapse happens during this process, but having
forgotten a part of the system, it appears so from the inside.

17

CONCLUDING REMARKS

• Quantum information effects give a typelevel separation between
quantum programs with and without quantum measurement, and gives an
account of measurement through allocation and hiding.

• Slogan: The observer effect is a computational effect.
• Corollary: Pure states are computationally pure.

• Things I didn’t mention:
• Categorical semantics of UΠ, UΠa, and UΠχ

a based on universal
constructions applied to rigcategories.

• Purely categorical statement of Toffoli’s fundamental theorem of reversible
computation.

• Reasoning about measurement using rigcategories instead of Hilbert spaces.
• Interpretation of quantum gate sets as well as quantum flow charts (without

iteration).

• Read the paper! (artifact also available)
• Happy to chat and answer questions, email me at
robin.kaarsgaard@ed.ac.uk to book Zoom meeting.

18

mailto:robin.kaarsgaard@ed.ac.uk

