QUANTUM INFORMATION EFFECTS

POPL 2022

Chris Heunen Robin Kaarsgaard

January 20, 2022

School of Informatics, University of Edinburgh

chris.heunen@ed.ac.uk robin.kaarsgaard@ed.ac.uk

Time and space.

Usually not considered: *information cost*.

 $inc :: int32 \rightarrow int32$ $reset :: int32 \rightarrow int32$ \int *inc* $n = n + 1$ *reset* $n = 0$

What is the information cost of *inc* and *reset*?

- Applying *inc* is free (input always recoverable from output).
- Applying *reset* costs 32 bits of information (input *never* recoverable from output).

But we can't see this in the type signatures.

Idea (James & Sabry, POPL '12):

Classical computation = Classical *reversible* computation + information effects.

 $\text{erase} :: b \rightsquigarrow 1$ $\text{create} :: 1 \rightsquigarrow b$

Is there an analogous result for the quantum case?

Classical states: $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ Probabilistic mix: e.g., $\begin{pmatrix} \frac{1}{4} & 0 \\ 0 & \frac{3}{4} \end{pmatrix}$ $0 \frac{3}{4}$ $\Big)$, $\Big(\frac{1}{2} \frac{0}{1}$ $0 \frac{1}{2}$) *.* Superposed quantum states: e.g., $\left(\begin{smallmatrix} \frac{1}{4} & \frac{3}{8} \\ \frac{3}{8} & \frac{3}{4} \end{smallmatrix}\right)$ $\Bigg), \left(\begin{array}{ccc} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{array} \right.$) *.* **Measurement:**

- Wave function collapse?
- The *observer effect*: $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$

 $not: \text{qubit} \rightarrow \text{qubit}$ *measure* $\therefore \text{qubit} \rightarrow \text{qubit}$ *not* $q = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} q \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ *measure* $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$

What is the information cost of *not* and *measure*?

- Applying *not* is free.
- Applying *measure* costs 1 qubit of quantum information.

The observer effect destroys quantum information!

James & Sabry, POPL '12: Classical computation is reversible computation with information allocation and erasure.

Can we make sense of *quantum measurement* and *the observer effect* by similar means?

- Is the observer effect a computational effect?
- Are pure states computationally pure?

QUANTUM INFORMATION EFFECTS

...and yes, they are!

- (i) Introduce *U*Π ("yuppie"), a reversible quantum combinator language (based on the classical combinator language Π).
- (ii) Extend $U\Pi$ with *allocation*, yielding $U\Pi_a$ ("yuppie-a").
- (iii) Extend $U\Pi_a$ with a *hiding*, yielding $U\Pi_a^{\chi}$ ("yuppie-chi-a").
- (iv) Argue that $U\Pi^{\chi}_a$ can account for measurement.

*U*Π**: UNITARY** Π

```
Syntax
         b ::= 0 | 1 | b + b | b \times b (base types)<br>
t ::= b \leftrightarrow b (combinator types)
                                                                                                (combinator types)
         a ::= id \mid swap^+ \mid unit^+ \mid unit^+ \mid assoc^+ \mid assoc^+ \mid assoc^+| swap<sup>\times</sup> | uniti| uniti| associ| associ|| distrib | distribi | distribo | distriboi (primitive combinators)
          c ::= a | c \S c | c + c | c \times c (combinators)
Typing rules
                         id : b \leftrightarrow b : id
                      swap^+ : b_1 + b_2 \leftrightarrow b_2 + b_1 : swap^+unit<sup>+</sup> : b+0 \leftrightarrow b : uniti<sup>+</sup>
                     assoc^+ : (b_1 + b_2) + b_3 \leftrightarrow b_1 + (b_2 + b_3) : associ<sup>+</sup>
                     swap^{\times} : b_1 \times b_2 \leftrightarrow b_2 \times b_1 : swap^{\times}<br>
unit^{\times} : b \times 1 \leftrightarrow b : unit^{\times}unit<sup>×</sup> · h × 1 \leftrightarrow h
                     assoc^{\times} : (b_1 \times b_2) \times b_3 \leftrightarrow b_1 \times (b_2 \times b_3) : assoc^{\times}\begin{array}{lcl} \textit{distribi} & : & b_1 \times (b_2 + b_3) \leftrightarrow (b_1 \times b_2) + (b_1 \times b_3) & : & \textit{distribi} \\ \textit{distribo} & : & b \times 0 \leftrightarrow 0 & : & \textit{distriboi} \end{array}distribo : b \times 0 \leftrightarrow 0c_1 : b_1 \leftrightarrow b_2 \quad c_2 : b_2 \leftrightarrow b_3 c_1 : b_1 \leftrightarrow b_3 \quad c_2 : b_2 \leftrightarrow b_4 c_1 : b_1 \leftrightarrow b_3 \quad c_2 : b_2 \leftrightarrow b_4c_1 \,9 c_2 : b_1 \leftrightarrow b_3 c_1 + c_2 : b_1 + b_2 \leftrightarrow b_3 + b_4 c_1 \times c_2 : b_1 \times b_2 \leftrightarrow b_3 \times b_4
```


 $U\Pi$ is Π extended with two distinctly quantum combinators, $phase_{\omega}$ and $hadamard$.

All of these are *unitaries*: reversible quantum computations.

Theorem (Expressivity): $U\Pi$ is approximately universal for $2^n \times 2^n$ unitaries.

*U*Π*a***:** *U*Π **WITH ALLOCATION** Fig. 4. The implementation of a variety of quantum gates in ^U⇧. We use *Qbit*⁼ as shorthand for the ⁼-fold

Extends *U*Π with the ability to allocate from a hidden heap.

on alloc \cdot 0 \rightarrow b implemented as lifted left Allocation $alloc: 0 \rightarrow b$ implemented as lifted left unitor:

$$
\frac{(swap^+ \mathbin{\substack{\circ}} w \mathbin{\substack{\textit{unit}}}^+): 0 + b \leftrightarrow b}{\mathit{lift}(swap^+; \mathit{unit}^+): 0 \rightarrow b}
$$

to an *arrow with choice* over $U\Pi$, allowing definition of arr, \gg , first, Extends to an *arrow with choice* over *U*Π, allowing definition of *arr* , ≫, *first* ,
left_exe $S_{\rm eff}$, we will see how a categorical model of U α *left*, etc.

Using *alloc* and the other arrow combinators, we can further define a *classical cloning* combinator *clone* : $b \rightarrow b \times b$.

All of these are *isometries*: (roughly) injective quantum computations. **Theorem (Expressivity):** $\mathcal{U}\Pi_a$ is approximately universal for $2^n \times 2^m$ isometries.

The hiding combinator allows projections *fst* : 1¹ ⇥ 1² 1¹ and *snd* : 1¹ ⇥ 1² 1² to be Implements $discard : b \leadsto 1$ as inverse left unitor: Extends $U\Pi_a$ with the ability to discard information to a hidden garbage dump.

$$
\frac{(unit^{i} \times g swap \times) : b \leftrightarrow 1 \times b}{lift-unit^{i} \times g swap \times) : b \leadsto 1}
$$

As with $\mathcal{U}\Pi_a$, this extends to an arrow with choice.

Using *discard* and the other combinators, we can derive (among other things)

- projections $fst : b \times b' \leadsto b$ and $snd : b \times b' \leadsto b'$, and
- measurement *measure* : $b \rightsquigarrow b$.

All of these are *quantum channels*: arbitrary quantum computations on mixed states (CPTP maps).

Theorem (Expressivity): $\mathcal{U}\Pi^{\chi}_{a}$ **is approximately universal for quantum** channels.

measure = *clone* ≫ *fst*

This aligns with the explanation of measurement offered by *decoherence:*

- *clone* prepares a new qubit, then applies (reversible) operations to perfectly entangle our qubit with the newly prepared one; then
- when *fst* is applied, we *forget* one half of the prepared system, from which point on it can be considered no different from any other part of the environment.

This is a precisely a process for leaking information into the environment: no "actual" wave function collapse happens during this process, but having forgotten a part of the system, it appears so from the inside.

CONCLUDING REMARKS

- Quantum information effects give a type-level separation between quantum programs with and without quantum measurement, and gives an account of measurement through allocation and hiding.
	- Slogan: *The observer effect is a computational effect.*
	- Corollary: *Pure states are computationally pure.*
- Things I didn't mention:
	- Categorical semantics of $\mathcal{U}\Pi$, $\mathcal{U}\Pi_a$, and $\mathcal{U}\Pi_a^{\chi}$ based on universal constructions applied to rig-categories.
	- Purely categorical statement of Toffoli's *fundamental theorem of reversible computation*.
	- Reasoning about measurement using rig-categories instead of Hilbert spaces.
	- Interpretation of quantum gate sets as well as quantum flow charts (without iteration).
- Read the paper! (artifact also available)
- Happy to chat and answer questions, email me at robin.kaarsgaard@ed.ac.uk to book Zoom meeting.