QUANTUM INFORMATION EFFECTS

POPL 2022

Chris Heunen Robin Kaarsgaard

January 20, 2022

School of Informatics, University of Edinburgh

chris.heunen@ed.ac.uk robin.kaarsgaard@ed.ac.uk

Time and space.

Usually not considered: information cost.

 $\begin{array}{ll} inc::\operatorname{int}32\to\operatorname{int}32 & reset::\operatorname{int}32\to\operatorname{int}32\\ inc\;n=n+1 & reset\;n=0 \end{array}$

What is the information cost of *inc* and *reset*?

- Applying *inc* is free (input always recoverable from output).
- Applying *reset* costs 32 bits of information (input *never* recoverable from output).

But we can't see this in the type signatures.

Idea (James & Sabry, POPL '12):

Classical computation = Classical *reversible* computation + information effects.

 $erase :: b \rightsquigarrow 1$ $create :: 1 \rightsquigarrow b$

Is there an analogous result for the quantum case?

Classical states: $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ Probabilistic mix: e.g., $\begin{pmatrix} \frac{1}{4} & 0 \\ 0 & \frac{3}{4} \end{pmatrix}$, $\begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$. Superposed quantum states: e.g., $\begin{pmatrix} \frac{1}{4} & \frac{3}{8} \\ \frac{3}{8} & \frac{3}{4} \end{pmatrix}$, $\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$. Measurement:

- Wave function collapse?
- The observer effect: $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$

 $\begin{array}{ll} not :: \text{qubit} \to \text{qubit} & measure :: \text{qubit} \to \text{qubit} \\ not \ q = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} q \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} & measure \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \end{array}$

What is the information cost of not and measure?

- Applying *not* is free.
- Applying *measure* costs 1 qubit of quantum information.

The observer effect destroys quantum information!

James & Sabry, POPL '12: Classical computation is reversible computation with information allocation and erasure.

Can we make sense of *quantum measurement* and *the observer effect* by similar means?

- Is the observer effect a computational effect?
- Are pure states computationally pure?

QUANTUM INFORMATION EFFECTS

... and yes, they are!

- (i) Introduce UΠ ("yuppie"), a reversible quantum combinator language (based on the classical combinator language Π).
- (ii) Extend $\mathcal{U}\Pi$ with *allocation*, yielding $\mathcal{U}\Pi_a$ ("yuppie-a").
- (iii) Extend $\mathcal{U}\Pi_a$ with a *hiding*, yielding $\mathcal{U}\Pi_a^{\chi}$ ("yuppie-chi-a").
- (iv) Argue that $\mathcal{U}\Pi_a^{\chi}$ can account for measurement.

$\mathcal{U}\Pi$: Unitary Π

```
Syntax
          b ::= 0 | 1 | b + b | b \times b
                                                                                                          (base types)
          t ::= b \leftrightarrow b
                                                                                               (combinator types)
          a ::= id | swap^+ | unit^+ | uniti^+ | assoc^+ | associ^+
               | swap^{\times} | unit^{\times} | uniti^{\times} | assoc^{\times} | associ^{\times}
               | distrib | distribi | distribo | distriboi
                                                                                        (primitive combinators)
          c ::= a \mid c \circ c \mid c + c \mid c \times c
                                                                                                       (combinators)
Typing rules
                                                           h \leftrightarrow h
                        id
                                                                           : id
                     swap^+: b_1 + b_2 \leftrightarrow b_2 + b_1: swap^+
                      unit<sup>+</sup> :
                                                    b + 0 \leftrightarrow b : uniti^+
                     assoc^+ \quad : \qquad (b_1+b_2)+b_3 \leftrightarrow b_1+(b_2+b_3) \qquad : \quad associ^+
                     swap^{\times} : b_1 \times b_2 \leftrightarrow b_2 \times b_1 : swap^{\times}
                                                          b \times 1 \leftrightarrow b
                                                                            : uniti<sup>×</sup>
                      unit^{\times} :
                     assoc^{\times} : (b_1 \times b_2) \times b_3 \leftrightarrow b_1 \times (b_2 \times b_3) : associ^{\times}
                     distrib : b_1 \times (b_2 + b_3) \leftrightarrow (b_1 \times b_2) + (b_1 \times b_3) : distribution
                    distribo :
                                                      b \times 0 \leftrightarrow 0
                                                                           : distriboi
  c_1:b_1 \leftrightarrow b_2 \quad c_2:b_2 \leftrightarrow b_3 \qquad c_1:b_1 \leftrightarrow b_3 \quad c_2:b_2 \leftrightarrow b_4 \qquad c_1:b_1 \leftrightarrow b_3 \quad c_2:b_2 \leftrightarrow b_4
         c_1 \circ c_2 : b_1 \leftrightarrow b_3 \qquad \qquad c_1 + c_2 : b_1 + b_2 \leftrightarrow b_3 + b_4 \qquad c_1 \times \overline{c_2 : b_1 \times b_2} \leftrightarrow \overline{b_3 \times b_4}
```

Syntax					
	$a ::= \cdots \mid phase_{\varphi} \mid hadamard$			(primitive combinators)	
Typing rul	es				
	$phase_{\varphi}$:	$1 \leftrightarrow 1$:	$phase_{\overline{\varphi}}$
	hadamard	:	$1+1 \leftrightarrow 1+1$:	hadamard

 $\mathcal{U}\Pi$ is Π extended with two distinctly quantum combinators, $phase_{\varphi}$ and hadamard.

All of these are *unitaries*: reversible quantum computations.

Theorem (Expressivity): $\mathcal{U}\Pi$ is approximately universal for $2^n \times 2^n$ unitaries.

$\mathcal{U}\Pi_a$: $\mathcal{U}\Pi$ with allocation

Syntax				
	$b ::= 0 \mid 1 \mid b + b \mid b \times$	b (base types)		
	$t ::= b \rightarrowtail b$	(combinator types)		
	c ::= lift u	(primitive combinators)		
Typing rules				
	$\frac{u:b_1+b_3\leftrightarrow b_2}{lift\;u:b_1\rightarrowtail b_2}$			

Extends $\mathcal{U}\Pi$ with the ability to allocate from a hidden heap.

Allocation $alloc : 0 \rightarrow b$ implemented as lifted left unitor:

$$\frac{(swap^{+} guit^{+}): 0 + b \leftrightarrow b}{lift(swap^{+}; unit^{+}): 0 \rightarrow b}$$

Extends to an *arrow with choice* over $U\Pi$, allowing definition of *arr*, \gg , *first*, *left*, etc.

Using *alloc* and the other arrow combinators, we can further define a *classical cloning* combinator *clone* : $b \rightarrow b \times b$.

All of these are *isometries*: (roughly) injective quantum computations. **Theorem (Expressivity):** $\mathcal{U}\Pi_a$ is approximately universal for $2^n \times 2^m$ isometries.

Syntax				
	$b ::= 0 \mid 1 \mid b + b \mid b \times b$	(base types)		
	$t ::= b \rightsquigarrow b$	(combinator types)		
	c ::= lift v	(primitive combinators)		
Typing rules				
	$\underline{v:b_1 \rightarrowtail b_2 \times b_3}$	b ₃ inhabited		
	$lift v : b_1 \rightsquigarrow b_2$			

Extends $U\Pi_a$ with the ability to discard information to a hidden garbage dump. Implements *discard* : $b \rightsquigarrow 1$ as inverse left unitor:

$$\frac{(uniti^{\times} g swap^{\times}): b \leftrightarrow 1 \times b}{lift(uniti^{\times} g swap^{\times}): b \rightsquigarrow 1}$$

As with $\mathcal{U}\Pi_a$, this extends to an arrow with choice.

Using discard and the other combinators, we can derive (among other things)

- projections $fst: b \times b' \rightsquigarrow b$ and $snd: b \times b' \rightsquigarrow b'$, and
- measurement $measure : b \rightsquigarrow b$.

All of these are *quantum channels*: arbitrary quantum computations on mixed states (CPTP maps).

Theorem (Expressivity): $\mathcal{U}\Pi_a^{\chi}$ is approximately universal for quantum channels.

 $measure = clone \ggg fst$

This aligns with the explanation of measurement offered by *decoherence*:

- *clone* prepares a new qubit, then applies (reversible) operations to perfectly entangle our qubit with the newly prepared one; then
- when *fst* is applied, we *forget* one half of the prepared system, from which point on it can be considered no different from any other part of the environment.

This is a precisely a process for leaking information into the environment: no "actual" wave function collapse happens during this process, but having forgotten a part of the system, it appears so from the inside.

CONCLUDING REMARKS

- Quantum information effects give a type-level separation between quantum programs with and without quantum measurement, and gives an account of measurement through allocation and hiding.
 - Slogan: The observer effect is a computational effect.
 - Corollary: Pure states are computationally pure.
- Things I didn't mention:
 - Categorical semantics of UΠ, UΠ_a, and UΠ^χ_a based on universal constructions applied to rig-categories.
 - Purely categorical statement of Toffoli's *fundamental theorem of reversible computation*.
 - Reasoning about measurement using rig-categories instead of Hilbert spaces.
 - Interpretation of quantum gate sets as well as quantum flow charts (without iteration).
- Read the paper! (artifact also available)
- Happy to chat and answer questions, email me at robin.kaarsgaard@ed.ac.uk to book Zoom meeting.