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Quantum Computation 
as a Completion

“It’s really something that is special for 
quantum computation because it’s 
somehow ‘complete’ — quantum 
computation is some kind of completion, 
mathematically, of classical computation. I 
think of this as maybe similar to the fact 
that the complex numbers are an algebraic 
closure of the real numbers.”
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Algebraic Closure

A field  is algebraically closed when 
every (non-constant) polynomial has a 
root in .

The real numbers are famously not 
algebraically closed, e.g., the 
polynomial  has no real roots.

To get a solution to this polynomial, 
we need to go to the algebraic closure of 
the real numbers, i.e., complex 
numbers.
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Unitaries

A complex  matrix  is unitary when 
 (with ).

Unitaries give semantics to quantum 
programs.
Unitaries are a bit like numbers in that we 
can form polynomials over them (using 
matrix multiplication and entrywise sum). 
Polynomials of the form  even 
always have unitary solutions for any 
unitary  – i.e., every unitary has a (unitary) 
square root.
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Permutations

A permutation of  elements can be 
seen as an  unitary with Boolean 
entries.
Permutations give semantics to 
reversible classical programs.
However, not all polynomials of 
permutations of the form  have 
solutions in the permutations. 
In other words, not every permutation 
has a square root (in the permutations). 

n
n × n

X2 − V

⑨ ⑳ ⑨ TS

S-J· => (& & &

S ·⑨ ⑳ ⑨ T ↳ ↓

S - & &-J· S& & & & ↓ d
& ⑧ &

⑥ ⑬
& = 2?·⑨



A Question

Summary: Not all reversible classical 
programs have square roots, but all 
quantum programs do.
Is this a defining feature of quantum 
computation?
Can we recover universal quantum 
computation from classical reversible 
computation with (certain) square roots?
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1 ::= 0 | 1 | 1 + 1 | 1 ⇥ 1 (value types)
C ::= 1 $ 1 (combinator types)

iso ::= id | swap+ | assocr+ | assocl+ | unite+; | uniti+; | absorbl | factorzr (isomorphisms)
| swap⇥ | assocr⇥ | assocl⇥ | unite⇥; | uniti⇥; | dist | factor

2 ::= iso | 2 o
9 2 | 2 + 2 | 2 ⇥ 2 (combinators)

Fig. 3. The syntax of ⇧.

id : 1 $ 1 : id
swap+ : 11 + 12 $ 12 + 11 : swap+
assocr+ : (11 + 12) + 13 $ 11 + (12 + 13) : assocl+

unite+; : 0 + 1 $ 1 : uniti+;
swap⇥ : 11 ⇥ 12 $ 12 ⇥ 11 : swap⇥
assocr⇥ : (11 ⇥ 12) ⇥ 13 $ 11 ⇥ (12 ⇥ 13) : assocl⇥

unite⇥; : 1 ⇥ 1 $ 1 : uniti⇥;
dist : (11 + 12) ⇥ 13 $ (11 ⇥ 13) + (12 ⇥ 13) : factor

absorbl : 1 ⇥ 0 $ 0 : factorzr

21 : 11 $ 12 22 : 12 $ 13
21 o

9 22 : 11 $ 13

21 : 11 $ 13 22 : 12 $ 14
21 + 22 : 11 + 12 $ 13 + 14

21 : 11 $ 13 22 : 12 $ 14
21 ⇥ 22 : 11 ⇥ 12 $ 13 ⇥ 14

Fig. 4. Types for ⇧ combinators

���� 2 = dist o
9 id + (id ⇥ 2) o

9 factor
1 : 1 $ 1 = id

� : 2 $ 2 = swap+

�� : 2 ⇥ 2 $ 2 ⇥ 2 = ���� swap+

��� : 2 ⇥ 2 ⇥ 2 $ 2 ⇥ 2 ⇥ 2 = ���� ��

Fig. 5. Derived ⇧ constructs.

The instance of id at type 1 $ 1 plays an important role as it will induce scalars; it is given the
distinguished name 1 when used as a scalar value. To see how this language expresses reversible
circuits, we �rst de�ne types that describe sequences of booleans (2=). We use the type 2 = 1 + 1 to
represent booleans with the left injection representing false and the right injection representing
true. Boolean negation (the �-gate) is straightforward to de�ne using the primitive combinator
swap+. We can represent =-bit words using an =-ary product of boolean values. To express the
��- and ���-gates we need to encode a notion of conditional expression. Such conditionals turn
out to be expressible using the distributivity and factoring identities of rigs as shown in Fig. 5.
An input value of type 2 ⇥ 1 is processed by the dist operator, which converts it into a value of
type (1 ⇥ 1) + (1 ⇥ 1). Only in the right branch, which corresponds to the case when the boolean
is true, is the combinator 2 applied to the value of type 1. The inverse of dist, namely factor is
applied to get the �nal result. Using this conditional, �� is de�ned as ���� � and the To�oli ���
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Π is for Programming 
with Permutations
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Π is a strongly typed programming 
language for finite permutations.
Fact 1: Its semantics are given by rig 
groupoids and their axioms.
Fact 2: Π admits the Toffoli gate set, 
i.e., every finite permutation is the 
denotation of some Π program.
Fact 3: Π is equationally fully abstract: 

 as permutations iff
 in every rig groupoid.

[[c1]] = [[c2]]
[[c1]] = [[c2]]



A Few Square Roots

We extend this simple language by 
adding two base isomorphisms

and three equations governing them

  (E1) 

  (E2) 

  (E3*)  where 

We call the resulting language .

w : 1 ↔ 1 v : 1 + 1 ↔ 1 + 1

v2 ↔2 x
w8 ↔2 id1

v; s; v ↔2 s; v; s s = id + w2

Π



Models of Π

Models of  are rig groupoids 
 with distinguished 

maps  and  
satisfying the three equations.
Choosing

we see that  is a model of .

Π
(C, I, O, ⊗ , ⊕ )

ω : I → I 𝖵 : I ⊕ I → I ⊕ I

ω = e2πi/8 𝖵 =
1 + i

2 ( 1 −i
−i 1 )

Unitary Π



Gates and Circuits

We can represent all classical reversible gates 
in , but also the phase gates

and the Hadamard gate

where  denotes abstract scalar multiplication

These coincide with usual definitions in 
.

We can use this to represent circuits in various 
gate sets, including Clifford+T.

Π

𝖳 = id + w 𝖲 = id + w2 𝖹 = id + w4

𝖧 = w7 ∙ (v; s; v)
s ∙ f

s ∙ f = uniti×l; s × f; unite×l

Unitary
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l · � = � · l (A1) �0⌫1 = �1⌫0 (A2)
l8 = id (A3) H2 = id (A4)
S4 = id (A5) SHSHSH = l · id (A6)
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Fig. 9. A sound and complete equational theory of  2-qubit Cli�ord circuits due to Selinger [2015]. What
we call (A3)–(A13) refer to relations (C1)–(C11) in the original paper by Selinger [2015] (equations (A1) and
(A2) become relevant once we consider  2-qubit Cli�ord+T circuits [Bian and Selinger 2022]). Note that we
swap the order of (A12) and (A13) compared to the original presentation by Selinger [2015].

6 SOUNDNESS AND COMPLETENESS
We present our main technical development:

p
⇧ is equationally sound and complete for a variety of

gate sets, including the computationally universal Gaussian Cli�ord+T [Amy et al. 2020]. This is
expressed in terms of a series of full abstraction results, showing that fragments of

p
⇧ are fully

abstract for certain classes of unitaries.
To our knowledge, this is the �rst presentation of a computationally universal quantum pro-

gramming language with a sound and complete equational theory.

6.1  2-qubit Cli�ord Circuits
We begin by proving that models of

p
⇧ satisfy the sound and complete equational theory of

 2-qubit Cli�ord circuits shown in Fig. 9. Cli�ord circuits are those which can be formed using
the gates {CZ, S,H} and the scalar l = 48c/4.

De�nition 6.1. In a model of
p
⇧, a representation of a Cli�ord circuit is any morphism which can

be written in terms of morphisms from the sets {l, S,H,CZ} and {U⌦,U�1
⌦ , _⌦, _�1⌦ , d⌦, d�1

⌦ ,f⌦},
composed arbitrarily in parallel (using ⌦) and in sequence (using �). A representation of a  2-qubit
Cli�ord circuit is one with signature � � � ! � � � or (� � � ) ⌦ (� � � ) ! (� � � ) ⌦ (� � � ).

Note that this de�nition permits both scalar multiplication by powers ofl (since this is formulated
using the coherence isomorphisms) and use of the SWAP gate (since this is precisely f⌦). This
result relies on the generators and relations for Cli�ord circuits due to Selinger [2015], which we
prove are all satis�ed in any model of

p
⇧:

(A1) l • 5 = 5 • l for all 5 follows by Prop. 5.5 (iii).
(A2) That (5 ⌦ id) � (id ⌦ 6) = (id ⌦ 6) � (5 ⌦ id) follows by bifunctoriality of ⌦.
(A3) l8 = id follows immediately by (E1).
(A4) We derive

H � H = (l • X � S � V � S � X) � (l • X � S � V � S � X) (def. H)
= l2 • X � S � V � S � X � X � S � V � S � X (Prop. 5.5)
= l2 • X � S � V � S � S � V � S � X (X2 = id)
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⇓

((𝖲; 𝖧) × id); ctrl 𝖹; ((𝖲; 𝖧; 𝖲) × 𝖲)
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Equational Theories

We can reason about these circuits 
using the axioms of rig groupoids and 
axioms (E1) — (E3).
Recent work gives sound and 
complete equational theories for 
various quantum gate sets and unitary 
groups.
This allows us to show equational full 
abstraction results for certain classes of 
terms in .Π



Full Abstraction

Given any model of , a term  has an 
interpretation . Since  is a model 

,  also has a unitary interpretation .

We show a number of theorems of the form

for all terms  and  of a syntactic form, 
corresponding to representation of circuits 
formed using various gate sets.

Approach: Show that the all sound and 
complete equational theories in sight are 
implied by the rig axioms and (E1) — (E3).

Π c
[[c]] Unitary

Π c (|c |)

[[c1]] = [[c2]] iff (|c1 |) = (|c2 |)
c1 c2

[[𝖲; 𝖲]] = [[𝖲]] ∘ [[𝖲]]

= (id ∘ id) ⊕ (ω2 ∘ ω2)
= id ⊕ ω4

= [[𝖹]]

= (id ⊕ ω2) ∘ (id ⊕ ω2)



Full Abstraction

We show theorems of this form for
Clifford circuits of arbitrary size.
Clifford+T circuits of ≤ 2 qubits.
Unitaries with entries in the ring 

.

Gaussian Clifford+T (i.e., 
Clifford+Toffoli) circuits of arbitrary 
size.

The latter two are universal.

ℤ [ 1
2 , i]



Closure

We have a formalisation written in Agda, 
including many of our lemmas and 
theorems, see
https://github.com/JacquesCarette/SqrtPi/ 

Central question: Can we increase accuracy 
by adding more square roots and retain full 
abstraction? 

Roadblock: No known sound and 
complete equational theory for ≥2-qubit 
Clifford+T.

Conjecture:  is equationally fully 
abstract for all Clifford+T circuits.

Π

EQUATIONALLY SOUND AND COMPLETE 
UNIVERSAL UNITARY QUANTUM COMPUTATION 
IS JUST RIG GROUPOIDS WITH TWO 
DISTINGUISHED MORPHISMS AND THREE 
ADDITIONAL COHERENCE CONDITIONS, WHAT’S 
THE PROBLEM?



A Word From My 
Sponsors
We’re hiring a DIAS Tenure Track Assistant 
Professor in Quantum Mathematics or 
Programming Technology at the University of 
Southern Denmark.

Topics include quantum programming, quantum 
foundations, and choreographic programming.

Deadline: March 1, 2024.

Topics: https://www.sdu.dk/en/qmpt

Call: http://tinyurl.com/diasqmpt 

https://www.sdu.dk/en/qmpt
http://tinyurl.com/diasqmpt

