Bennett & Stinespring, Together at Last

18TH INTERNATIONAL CONFERENCE ON QUANTUM PHYSICS AND LOGIC

Robin Kaarsgaard Chris Heunen

June 7, 2021

School of Informatics, University of Edinburgh robin.kaarsgaard@ed.ac.uk

REVERSIBLE COMPUTATION

In *(forward) deterministic computation*, the current computation state *uniquely* determines the *next* computation state.

In *backward deterministic computation*, the current computation state *uniquely* determines the *previous* computation state.

Reversible computation is forward and backward deterministic.

Examples: Reversible Turing-machines, quantum circuits without measurement.

2

REVERSIBLE AND IRREVERSIBLE DYNAMICS

Reversible dynamics

PInj of sets and partial injective functions

Pfn of sets and partial functions

Irreversible dynamics

Unitary of f.d. Hilbert spaces and unitaries

CPTP of f.d. Hilbert spaces and quantum channels

What is the relationship between these?

Bennett's method

Theorem: Any deterministic 1-tape Turing machine can be simulated by a reversible 3-tape Turing machine.

This theorem, known as *Bennett's method*, requires us to disregard any extraneous data on the two extra tapes.

Stage	Working tape	History tape	Output tape
Compute	Input	_	_
	Output	History	_
Сору	Output	History	Output
Uncompute	Input	_	Output

Stinespring's theorem

5

STINESPRING'S THEOREM

Theorem: Every quantum channel $H_A \xrightarrow{\Lambda} H_B$ is of the form

$$\Lambda(\rho_A) = \operatorname{tr}_E(U\rho_A U^{\dagger})$$

for an isometry U.

In other words, every channel can be thought of as a two-step process of a reversible channel and a channel hiding the extraneous output (the environment):

$$H_A \xrightarrow{U(-)U^{\dagger}} H_B \otimes H_E \xrightarrow{\operatorname{tr}_E(-)} H_B$$

Uniting Bennett and Stinespring

Observation: Both Bennett's method and Stinespring's theorem rely on the ability to *hide* extraneous outputs.

Working hypothesis: Irreversible computation (whether classical or quantum) is reversible computation with hiding.

In monoidal categories, hiding is realised by projections

$$A \xleftarrow{\pi_1} A \otimes B \xrightarrow{\pi_2} B$$

and a sufficient condition for the presence of these is that the unit I is terminal (it is an *affine monoidal category*).

Problem: Pfn has hiding through projections, but the unit is *not* terminal, though it is "essentially terminal" – there is not a *unique* map $A \to I$, but there is a unique *total* one.

Monoidal restriction categories

A restriction category is a category with a restriction structure, a combinator

$$\frac{A \xrightarrow{f} B}{A \xrightarrow{\overline{f}} A}$$

satisfying $f \circ \overline{f} = f$ and other laws. The *restriction idempotent* \overline{f} measures "how partial" f is (total maps, such as all isomorphisms, satisfy $\overline{f} = \operatorname{id}$).

Any category can be trivially made into a restriction category with $\overline{f} = \operatorname{id}$ for all f.

A restriction category has a *restriction terminal* object 1 if there is a unique *total* map $A \to 1$ for each object A.

A monoidal restriction category is a restriction category which is also monoidal and satisfies $\overline{f\otimes g}=\overline{f}\otimes \overline{g}.$

THE RESTRICTION AFFINE COMPLETION

To test our hypothesis, we need to come up with a way to formally add hiding to an arbitrary monoidal restriction category C.

We define $Aux(\mathbf{C})$ as follows:

- Objects: Objects of C.
- Morphisms: A morphism $A \to B$ is a pair of an object G and a morphism $A \to B \otimes G$ of \mathbf{C} , quotiented by the equivalence relation generated by the preorder defined as follows: $(f,G) \triangleleft (f',G')$ iff $\overline{f} = \overline{f'}$ and there exists $G \xrightarrow{h} G'$ in \mathbf{C} such that

commutes in C.

THE RESTRICTION AFFINE COMPLETION

Theorem: When C is a monoidal restriction category so is Aux(C), and there is a monoidal restriction functor $C \to Aux(C)$.

Theorem: The monoidal unit I is restriction terminal in $Aux(\mathbf{C})$.

We can show that $Aux(\mathbf{C})$ is the *restriction affine completion* of \mathbf{C} :

Theorem: For any restriction affine monoidal category \mathbf{D} and restriction monoidal functor $\mathbf{C} \xrightarrow{\hat{F}} \mathbf{D}$, there is a *unique* restriction affine monoidal functor $\mathrm{Aux}(\mathbf{C}) \xrightarrow{\hat{F}} \mathbf{D}$ making the diagram below commute.

THE RESTRICTION AFFINE COMPLETION

Theorem (Huot & Staton): Aux(**Isometry**) is restriction monoidally equivalent to **CPTP**.

However, interestingly, Aux(PInj) is *not* equivalent to Pfn!

We would want to identify morphisms $A \xrightarrow{(f,G)} B$ and $A \xrightarrow{(f',G')} B$ in $\operatorname{Aux}(\operatorname{\mathbf{PInj}})$ if in $\operatorname{\mathbf{Pfn}}$, $\pi_1 \circ f = \pi_1 \circ f'$, but this is not the case.

Consider $X \xrightarrow{f} X \otimes I$ given by f(x) = (x, *), and $X \xrightarrow{f'} X \otimes X$ given by f'(x) = (x, x). Clearly $\pi_1 \circ f = \pi_1 \circ f'$, but $X \xrightarrow{(f, I)} X$ and $X \xrightarrow{(f', X)} X$ are *not* equivalent in Aux(**PInj**) unless $X \cong I$.

In other words, unlike **Isometry**, **PInj** has "too much" freedom in choice of reversibilisation.

M. Huot, S. Staton, Universal Properties in Quantum Theory. In *Proceedings of the 15th International Conference on Quantum Physics and Logic* (OPL 2018), EPTCS 287, 2019.

A PROBLEM OF WELL-POINTEDNESS

However, notice that at each point $I \xrightarrow{p} X$, it is the case that $I \xrightarrow{p} X \xrightarrow{(f,I)} X$ and $I \xrightarrow{p} X \xrightarrow{(f',X)} X$ are equivalent in $\operatorname{Aux}(\mathbf{PInj})$. We can always choose p itself to mediate, as in

This turns out to be a general problem in $Aux(\mathbf{PInj})$: It is not well-pointed, yet \mathbf{Pfn} is. So let's make it well-pointed.

QUOTIENTING BY WELL-POINTEDNESS

Given a restriction category \mathbf{C} with a restriction terminal object I, we form a new category $\mathrm{Ext}(\mathbf{C})$ as follows:

- Objects: Objects of C.
- Morphisms: Morphisms of ${\bf C}$ quotiented by the equivalence $f \sim f'$ iff $f \circ p = f' \circ p$ for all $I \xrightarrow{p} X$, where $X \xrightarrow{f} Y$ and $X \xrightarrow{f'} Y$.

Theorem: When C is a restriction category with a restriction terminal object so is $\operatorname{Ext}(C)$, and there is a functor $C \to \operatorname{Ext}(C)$.

Indeed, it can be shown that this also has a universal property (details in paper).

RESTRICTION AFFINE COMPLETIONS QUOTIENTED BY WELL-POINTEDNESS

With this additional step, Bennett and Stinespring are together at last:

Theorem: $Ext(Aux(Isometry)) \cong CPTP$.

Theorem: $\operatorname{Ext}(\operatorname{Aux}(\mathbf{PInj})) \cong \mathbf{Pfn}$.

But wait, we wanted to know the relationship between Unitary and CPTP,

not Isometry and CPTP!

For this, we'll need ...

THE (RESTRICTION) COAFFINE COMPLETION

The (restriction) coaffine completion is given by $Inp(\mathbf{C}) = Aux(\mathbf{C}^{op})^{op}$.

Both **PInj** and **Unitary** are rig categories, and we can use the dual completion to make the unit of the direct sum \oplus initial.

This completes **Unitary** to **Isometry**, but is invariant on **PInj** (as the unit of the sum is already initial):

 $\textbf{Theorem: } \operatorname{Inp}_{\oplus}(\mathbf{Unitary}) \cong \mathbf{Isometry} \ \mathsf{but} \ \operatorname{Inp}_{\oplus}(\mathbf{PInj}) \cong \mathbf{PInj}.$

Putting all of these together, we get

Theorem: $\operatorname{Ext}(\operatorname{Aux}_{\otimes}(\operatorname{Inp}_{\oplus}(\mathbf{Unitary}))) \cong \mathbf{CPTP}.$

Theorem: $\operatorname{Ext}(\operatorname{Aux}_{\otimes}(\operatorname{Inp}_{\oplus}(\mathbf{PInj}))) \cong \mathbf{Pfn}$.

M. Huot, S. Staton. Quantum channels as a categorical completion. In 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2019), IEEE, 2019

Cofree reversible foundations

We can also essentially recover **PInj** and **Unitary** from **Pfn** and **CPTP** respectively, as their *cofree inverse categories* Inv(-) (details in paper).

Theorem: $Inv(\mathbf{Pfn}) \cong \mathbf{PInj}$.

Theorem: $Inv(\mathbf{CPTP}) \cong \mathbf{Unitary}_p$.

In the above, $\mathbf{Unitary}_p$ is the category of finite dimensional Hilbert spaces and unitaries identified up to global phase.

In summary

Thank you!

Thank you!