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REVERSIBLE COMPUTATION

X X

In (forward) deterministic computation, the current computation state uniquely
determines the next computation state.

In backward deterministic computation, the current computation state uniquely
determines the previous computation state.

Reversible computation is forward and backward deterministic.

Examples: Reversible Turing­machines, quantum circuits without
measurement.
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REVERSIBLE AND IRREVERSIBLE DYNAMICS

Reversible dynamics Irreversible dynamics

PInj of sets and partial
injective functions

Pfn of sets and partial
functions

Unitary of f.d. Hilbert
spaces and unitaries

CPTP of f.d. Hilbert
spaces and quantum channels

What is the relationship between these?

3



BENNETT’S METHOD

Theorem: Any deterministic 1­tape Turing machine can be simulated by a
reversible 3­tape Turing machine.

This theorem, known as Bennett’s method, requires us to disregard any
extraneous data on the two extra tapes.

Stage Working tape History tape Output tape

Compute
Input – –
Output History –

Copy Output History Output
Uncompute Input – Output
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STINESPRING’S THEOREM
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STINESPRING’S THEOREM

Theorem: Every quantum channel HA
Λ−→ HB is of the form

Λ(ρA) = trE(UρAU
†)

for an isometry U .

In other words, every channel can be thought of as a two­step process of a
reversible channel and a channel hiding the extraneous output (the
environment):

HA
U(−)U†

−−−−−→ HB ⊗HE
trE(−)−−−−→ HB
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UNITING BENNETT AND STINESPRING

Observation: Both Bennett’s method and Stinespring’s theorem rely on the
ability to hide extraneous outputs.

Working hypothesis: Irreversible computation (whether classical or quantum)
is reversible computation with hiding.

In monoidal categories, hiding is realised by projections

A A⊗B B
π2π1

and a sufficient condition for the presence of these is that the unit I is terminal
(it is an affine monoidal category).

Problem: Pfn has hiding through projections, but the unit is not terminal,
though it is “essentially terminal” – there is not a unique map A → I , but there
is a unique total one.
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MONOIDAL RESTRICTION CATEGORIES

A restriction category is a category with a restriction structure, a combinator

A
f−→ B

A
f−→ A

satisfying f ◦ f = f and other laws. The restriction idempotent f measures “how
partial” f is (total maps, such as all isomorphisms, satisfy f = id).

Any category can be trivially made into a restriction category with f = id for
all f .

A restriction category has a restriction terminal object 1 if there is a unique total
map A → 1 for each object A.

A monoidal restriction category is a restriction category which is also monoidal
and satisfies f ⊗ g = f ⊗ g.
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THE RESTRICTION AFFINE COMPLETION

To test our hypothesis, we need to come up with a way to formally add hiding
to an arbitrary monoidal restriction category C.

We define Aux(C) as follows:

• Objects: Objects of C.

• Morphisms: A morphism A → B is a pair of an object G and a
morphism A → B ⊗G of C, quotiented by the equivalence relation
generated by the preorder defined as follows: (f,G) ◁ (f ′, G′) iff f = f ′

and there exists G h−→ G′ in C such that

A

B ⊗G′ B ⊗G
id⊗h

ff ′

commutes in C.
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THE RESTRICTION AFFINE COMPLETION

Theorem: When C is a monoidal restriction category so is Aux(C), and there
is a monoidal restriction functor C → Aux(C).

Theorem: The monoidal unit I is restriction terminal in Aux(C).

We can show that Aux(C) is the restriction affine completion of C:

Theorem: For any restriction affine monoidal category D and restriction
monoidal functor C F−→ D, there is a unique restriction affine monoidal

functor Aux(C)
F̂−→ D making the diagram below commute.

C Aux(C)

D

F F̂
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THE RESTRICTION AFFINE COMPLETION

Theorem (Huot & Staton): Aux(Isometry) is restriction monoidally
equivalent to CPTP.

However, interestingly, Aux(PInj) is not equivalent to Pfn!

We would want to identify morphisms A
(f,G)−−−→ B and A

(f ′,G′)−−−−→ B in
Aux(PInj) if in Pfn, π1 ◦ f = π1 ◦ f ′, but this is not the case.

Consider X f−→ X ⊗ I given by f(x) = (x, ∗), and X
f ′

−→ X ⊗X given by

f ′(x) = (x, x). Clearly π1 ◦ f = π1 ◦ f ′, but X
(f,I)−−−→ X and X

(f ′,X)−−−−→ X

are not equivalent in Aux(PInj) unless X ∼= I .

In other words, unlike Isometry, PInj has “too much” freedom in choice of
reversibilisation.

M. Huot, S. Staton, Universal Properties in Quantum Theory. In Proceedings of the 15th International Conference
on Quantum Physics and Logic (QPL 2018), EPTCS 287, 2019.
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A PROBLEM OF WELL­POINTEDNESS

However, notice that at each point I p−→ X , it is the case that I p−→ X
(f,I)−−−→ X

and I
p−→ X

(f ′,X)−−−−→ X are equivalent in Aux(PInj). We can always choose p
itself to mediate, as in

I

X X

X ⊗ I X ⊗X
id⊗p

p p

f ′f

This turns out to be a general problem in Aux(PInj): It is not well­pointed,
yet Pfn is. So let’s make it well­pointed.
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QUOTIENTING BY WELL­POINTEDNESS

Given a restriction category C with a restriction terminal object I , we form a
new category Ext(C) as follows:

• Objects: Objects of C.

• Morphisms: Morphisms of C quotiented by the equivalence f ∼ f ′ iff

f ◦ p = f ′ ◦ p for all I p−→ X , where X f−→ Y and X
f ′

−→ Y .

Theorem: When C is a restriction category with a restriction terminal object so
is Ext(C), and there is a functor C → Ext(C).

Indeed, it can be shown that this also has a universal property (details in paper).

13



RESTRICTION AFFINE COMPLETIONS QUOTIENTED BY WELL­POINTEDNESS

With this additional step, Bennett and Stinespring are together at last:

Theorem: Ext(Aux(Isometry)) ∼= CPTP.

Theorem: Ext(Aux(PInj)) ∼= Pfn.

But wait, we wanted to know the relationship betweenUnitary and CPTP,
not Isometry and CPTP!

For this, we’ll need …
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THE (RESTRICTION) COAFFINE COMPLETION

The (restriction) coaffine completion is given by Inp(C) = Aux(Cop)op.

Both PInj and Unitary are rig categories, and we can use the dual
completion to make the unit of the direct sum ⊕ initial.

This completes Unitary to Isometry, but is invariant on PInj (as the unit
of the sum is already initial):

Theorem: Inp⊕(Unitary) ∼= Isometry but Inp⊕(PInj) ∼= PInj.

Putting all of these together, we get

Theorem: Ext(Aux⊗(Inp⊕(Unitary))) ∼= CPTP.

Theorem: Ext(Aux⊗(Inp⊕(PInj))) ∼= Pfn.

M. Huot, S. Staton. Quantum channels as a categorical completion. In 34th Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS 2019), IEEE, 2019
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COFREE REVERSIBLE FOUNDATIONS

We can also essentially recover PInj and Unitary from Pfn and CPTP

respectively, as their cofree inverse categories Inv(−) (details in paper).

Theorem: Inv(Pfn) ∼= PInj.

Theorem: Inv(CPTP) ∼= Unitaryp.

In the above,Unitaryp is the category of finite dimensional Hilbert spaces
and unitaries identified up to global phase.
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IN SUMMARY
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THANK YOU!

Thank you!
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