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UNIVERSAL PROPERTIES IN QUANTUM THEORY

Isolates the precise features setting various quantum theories apart.

Free structure provides syntactic extensions to programming languages,
connecting nicely to the theory of computational effects.

Modular semantics for quantum computation.
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Universal Properties in Quantum Theory

Mathieu Huot
ENS Paris-Saclay

Sam Staton
University of Oxford

We argue that notions in quantum theory should have universal properties in the sense of category the-
ory. We consider the completely positive trace preserving (CPTP) maps, the basic notion of quantum
channel. Physically, quantum channels are derived from pure quantum theory by allowing discard-
ing. We phrase this in category theoretic terms by showing that the category of CPTP maps is the
universal monoidal category with a terminal unit that has a functor from the category of isometries.
In other words, the CPTP maps are the affine reflection of the isometries.

1 Introduction

The basic foundation of statistical quantum mechanics and quantum channels is usually motivated as

follows.

Step 1. Pure quantum theory is not random, and is moreover reversible.

Step 2. Pure quantum theory does not allow us to discard or hide parts of a system.

Step 3. Full quantum theory accounts for the perspective of an observer for whom some things are

hidden. Hiding/discarding parts of a system can lead to randomness, mixed states, and quantum

channels.
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Figure 1: A typical quantum circuit.

In this paper we propose to formalize this argument

in categorical terms as follows. We use the language of

(symmetric) monoidal categories, which are structures

that support two forms of combination, as illustrated

in Figure 1: the monoidal product for juxtaposing sys-

tems, and categorical composition for connecting the in-

puts/outputs of systems. The figure also illustrates the

discarding of an ancilla (notated ).

Step 1. Pure quantum theory is based on the monoidal

category Isometry of finite dimensional Hilbert spaces and isometries between them. Recall that

an isometry C→ Cn is an n-level pure state, and every isometry Cn→ Cn is invertible (unitary).

Step 2. A monoidal category admits discarding when its monoidal unit (representing the empty sys-

tem) is a terminal object. For then every system A⊗B has a canonical map A⊗B→ A⊗ 1 ∼= A,

discarding B. But in the category of isometries, the monoidal unit C is not a terminal object.

Step 3. Full quantum theory can be interpreted in any symmetric monoidal category that contains

Isometry but where the unit is a terminal object (it supports discarding). Our main theorem (The-

orem 5) is that the universal such category is the monoidal category CPTP of finite dimensional

Hilbert spaces and completely positive trace preserving maps between them. Recall that a CPTP

map C→ Cn is an n-level mixed state in the usual sense. Thus full quantum theory is canonically

determined from pure quantum theory by the universal property of having a terminal unit.

Quantum channels as a categorical completion
Mathieu Huot

University of Oxford, UK
Sam Staton

University of Oxford, UK

Abstract—We propose a categorical foundation for the connec-
tion between pure and mixed states in quantum information and
quantum computation. The foundation is based on distributive
monoidal categories.

First, we prove that the category of all quantum channels is a
canonical completion of the category of pure quantum operations
(with ancilla preparations). More precisely, we prove that the
category of completely positive trace-preserving maps between
finite-dimensional C*-algebras is a canonical completion of the
category of finite-dimensional vector spaces and isometries.

Second, we extend our result to give a foundation to the
topological relationships between quantum channels. We do this
by generalizing our categorical foundation to the topologically-
enriched setting. In particular, we show that the operator norm
topology on quantum channels is the canonical topology induced
by the norm topology on isometries.

I. INTRODUCTION

A popular explanation of quantum theory says that, in real-
ity, everything is reversible (“pure quantum”), but conceptually
we can hide and prepare things, and this is what leads to
classical data, randomness and perceived irreversibility (“full
quantum”). In this paper we explain the passage from theories
of pure quantum to theories of full quantum in terms of
categorical completions.

We test this passage in several ways:
• Starting from pure quantum with preparations (isome-

tries), we recover quantum channels (completely positive
maps between C*-algebras) as a completion with hiding
— this is our main result (Thm. V.6);

• Starting from pure quantum (unitaries), we recover prepa-
ration of ancillas (isometries) as a completion with prepa-
rations (Thm. III.3);

• Also starting from pure quantum (unitaries), we recover
finite non-commutative geometry (finite-dimensional C*-
algebras and ⇤-homomorphisms) as a different comple-
tion (Thm. IV.10);

• Starting from topologies on the isometries, we re-
cover topologies on quantum channels as a completion
(Thm. VI.8).

All these require slightly different kinds of completion, and
in this introduction we discuss the kinds of categories and
completion at hand. First we consider the pure situation (§I-A),
then preparation of states (§I-B), and finally hiding of states
(§I-C) and topology (§I-D). In what follows we use categorical
terminology, but the casual reader may prefer the following
informal picture of our main result.
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Informally, the outer ellipse contains all the possible the-
ories, including pure quantum theory with preparations. The
inner circle contains the theories that admit hiding. Our main
result is that of all the theories that admit hiding, quantum
channels are the ‘closest’ to pure quantum with preparations.
This notion of ‘closeness’ will be made precise using category
theory.

In [21] we presented a similar paradigm for the restricted
version of quantum channels between matrix algebras. We
proved that those quantum channels are the affine completion
of the category of isometries, both seen as monoidal cate-
gories. We go further here by considering all finite dimensional
C*-algebras which amounts to handling classical data.

A. Rudiments of pure / reversible computing

Before moving to categorical side, we recall some rudiments
of reversible computing, which is one perspective on pure
quantum theory. The basic idea is that a classical reversible
operation on an n-level system is a bijection n ! n on
the natural number n considered as a finite set. A quantum
reversible operation is an n ⇥ n complex matrix that is
unitary. But the reader unfamiliar with quantum theory can
focus on the classical setting for now, because every bijection
can be thought of as a unitary matrix valued in {0, 1}. For
example, there are two reversible classical operations on bits
2 ! 2, identity and negation, and a reversible 2-bit operation
is a bijection 4 ! 4. The natural numbers form a rig (aka
semiring) under addition and multiplication, and we find a
simple calculus for building reversible operations by noticing
that the bijections and unitaries can be composed but also they
can be combined according to these rig operations. Here we
write (�, N) and (⌦, I) instead of + and ⇥ to emphasise their
categorical nature.

• The multiplication of numbers corresponds to spatial
juxtaposition of systems. For example, given two bi-
jections on a bit, f, g : 2 ! 2, we have a bijection978-1-7281-3608-0/19/$31.00 c�2019 IEEE
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This work:

• Completion of (finite­dimensional Hilbert spaces and) unitaries to
contractions via Halmos dilation.

• Completion of finite­dimensional Hilbert spaces and contractions to
finite­dimensional Hilbert spaces and CPTN maps via a variant of
Stinespring dilation.

• Completion of finite­dimensional Hilbert spaces and CPTN maps to
finite­dimensional C*­algebras and CPTN maps by splitting
measurements.
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UNITARIES TO CONTRACTIONS

Recall that Unitary is a dagger rig groupoid with (⊕, O) direct sum and
(⊗, I) tensor product.

Observation: In Contraction, O is a zero object. In Unitary, it is neither
initial nor terminal.

Theorem (Halmos): Every contraction T : H → K between finite­dimensional
Hilbert spaces extends to a unitary UT : H ⊕ E → K ⊕G satisfying
T = πKUT ιH in an essentially unique way.

UT

H

K

E

G

T

H

K

=
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CATEGORIFYING HALMOS DILATION

Given a dagger rig category C, make a new category LR⊕(C) with

• Objects: Those of C.

• Morphisms: Morphisms A → B in LR⊕(C) are equivalence classes of
morphisms A⊕ E → B ⊕G in C.

• Identities and composition: Identities are idA⊕O, composition is

g

B

C

E′

G′

f

A

B

E

G

◦ =

g

B

C

E′

G′

f
A E

G

E′

G

The tensor product (⊗, I) and direct sum (⊕, O) even also lift, as does the
dagger structure, giving another dagger rig category LR⊕(C).
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CATEGORIFYING HALMOS DILATION

Thanks to the equivalence relation, LR⊕(C) has the unit of the sum O as a
zero object.

The evident functor C → LR⊕(C) is even universal among functors into rig
categories where the sum unit O is a zero object:

C LR⊕(C)

D

∃!∀

It even works as intended:

Theorem: LR⊕(Unitary) ∼= Contraction.

Bonus classical result:

Theorem: LR⊕(FBij) ∼= FPInj.
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CONTRACTIONS TO CPTN MAPS

Let’s recall the situation Isometry → FHilbCPTP.

Theorem (Stinespring): Every CPTP map Φ : B(H) → B(K) in finite
dimension extends to an isometry V : H → K ⊗ E (for some
finite­dimensional Hilbert space E) such that Φ(ρ) = trE(V

†ρV ) in an
essentially unique way.

Huot and Staton noticed that the trace of a density matrix on H is the unique
CPTP map B(H) → C, so the tensor unit C is terminal (FHilbCPTP is affine
monoidal).

Theorem (Huot and Staton): FHilbCPTP is the affine completion of
Isometry as a monoidal category.
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CONTRACTIONS TO CPTN MAPS

In FHilbCPTN, this approach is morally correct but technically unsound.

The 0­dimensional Hilbert space is a zero object (i.e., both initial and terminal)
in FHilbCPTN.

The trace is no longer the unique map B(H) → C, though it is the unique
trace­preserving map.

And what about Stinespring?
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CONTRACTIONS TO CPTN MAPS

Theorem (Stinespring): Every CPTN map Φ : B(H) → B(K) in finite
dimension extends to a contraction V : H → K ⊗ E (for some
finite­dimensional Hilbert space E) such that Φ(ρ) = trE(V

†ρV ) in an
essentially unique way.

Need to be a bit careful with “essentially unique”: This is up to an isometry
applied on the ancilla E, not a contraction.

In Contraction, the isometries are precisely the dagger monics: maps f such
that f† ◦ f = id.
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CATEGORIFYING STINESPRING (ON PARTIAL MAPS)

Given a dagger monoidal category C, define a new category Lt
⊗(C) in the

following way:

• Objects: Objects of C.
• Morphisms: Morphisms H → K are equivalence classes of morphisms
H → K ⊗ E.

• Identities and composition: Identities are inverse right unitors ρ−1
⊗ ,

composition is

g

K

J G

f

H

K E

◦ =

g

K

J G

f
H

E

E

Theorem: Lt
⊗(Contraction) ∼= FHilbCPTN.

This construction is universal in that it makes the multiplicative unit I terminal
for total maps (dagger monics). But it also has a more interesting property…
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THE GENERALISED PABLO PUSHOUT

DagMon(C) C

L⊗(DagMon(C)) Lt
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THE PABLO PUSHOUT

Isometry Contraction

FHilbCPTP FHilbCPTN
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HILBERT SPACES TO C*­ALGEBRAS

Consider a measurement in FHilbCPTN: an idempotent
B(H ⊕K) → B(H ⊕K) of block matrices mapping(

A B

C D

)
7→

(
A 0

0 D

)
In FCstarCPTN, this idempotent splits as a measurement
B(H ⊕K) → B(H)⊕ B(K)(

A B

C D

)
7→ (A,D)

and a preparation B(H)⊕ B(K) → B(H ⊕K).

(A,D) 7→

(
A 0

0 D

)
But in FHilbCPTN, it does not split at all!
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HILBERT SPACES TO C*­ALGEBRAS

By Artin­Wedderburn, FCstarCPTN has direct sums
⊕

i∈I B(Hi) of
finite­dimensional B(H)s as objects.

FHilbCPTN has just finite­dimensional B(H)s as objects.

Observation: For every finite­dimensional C*­algebra A there exists a
finite­dimensional Hilbert space H and a (specifically CPTN) measurement
p : B(H) → B(H) such that the image of p is precisely A .

Idea: Encode a finite­dimensional C*­algebra A as a pair (H, p) of a Hilbert
space H and a measurement p : H → H with im(p) = A .

• A CPTN map of encoded C*­algebras (H, p) → (K, q) is a CPTN map
f : B(H) → B(K) satisfying f = q ◦ f ◦ p.

• This is the Karoubi envelope (but splitting only measurements)!
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HILBERT SPACES TO C*­ALGEBRAS

For a symmetric monoidal category* C, define a category SplitM (C) with

• Objects: Pairs (H, p) of an object H of C and a measurement*
p : H → H .

• Morphisms: Morphisms (H, p) → (K, q) of SplitM (C) are morphisms
f : H → K of C satisfying q ◦ f ◦ p = f .

• Identities: The identity (H, p) → (H, p) is p : H → H .

• Composition: As in C.

The evident functor C → SplitM (C) is universal among functors into
category where measurements of C split.

Theorem: SplitM (FHilbCPTN) ∼= FCstarCPTN.
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CONCLUDING REMARKS

Universal properties isolate the precise features setting various quantum theories
apart.

Universal constructions provide mechanical extensions to programming
languages, along with extensible program semantics.
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THE ACTUAL MEME ABSTRACT
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