Universal Properties of Partial Quantum Maps

QPL 2022, University of Oxford

Pablo Andrés-Martínez Chris Heunen

Robin Kaarsgaard

June 30, 2022

School of Informatics, University of Edinburgh

robin.kaarsgaard@ed.ac.uk
https://functorial.org

Isolates the precise features setting various quantum theories apart.

Free structure provides *syntactic extensions* to programming languages, connecting nicely to the theory of *computational effects*.

Modular semantics for quantum computation.

This work:

- Completion of (finite-dimensional Hilbert spaces and) *unitaries* to *contractions* via *Halmos dilation*.
- Completion of finite-dimensional Hilbert spaces and *contractions* to finite-dimensional Hilbert spaces and *CPTN maps* via a variant of *Stinespring dilation*.
- Completion of finite-dimensional Hilbert spaces and *CPTN maps* to finite-dimensional C*-algebras and *CPTN maps* by splitting measurements.

Recall that **Unitary** is a dagger rig groupoid with (\oplus, O) direct sum and (\otimes, I) tensor product.

Observation: In **Contraction**, *O* is a zero object. In **Unitary**, it is neither initial nor terminal.

Theorem (Halmos): Every contraction $T: H \to K$ between finite-dimensional Hilbert spaces extends to a unitary $U_T: H \oplus E \to K \oplus G$ satisfying $T = \pi_K U_T \iota_H$ in an essentially unique way.

Given a dagger rig category ${f C}$, make a new category $LR_\oplus({f C})$ with

- Objects: Those of C.
- Morphisms: Morphisms A → B in LR_⊕(C) are equivalence classes of morphisms A ⊕ E → B ⊕ G in C.
- Identities and composition: Identities are $id_{A\oplus O}$, composition is

The tensor product (\otimes, I) and direct sum (\oplus, O) even also lift, as does the dagger structure, giving another dagger rig category $LR_{\oplus}(\mathbf{C})$.

Thanks to the equivalence relation, $LR_{\oplus}(\mathbf{C})$ has the unit of the sum O as a *zero object*.

The evident functor $\mathbf{C} \to LR_{\oplus}(\mathbf{C})$ is even universal among functors into rig categories where the sum unit O is a zero object:

It even works as intended:

Theorem: $LR_{\oplus}($ Unitary $) \cong$ Contraction.

Bonus classical result:

Theorem: $LR_{\oplus}(\mathbf{FBij}) \cong \mathbf{FPInj}$.

Let's recall the situation $\mathbf{Isometry} \to \mathbf{FHilb}_{\mathrm{CPTP}}$.

Theorem (Stinespring): Every CPTP map $\Phi : \mathcal{B}(H) \to \mathcal{B}(K)$ in finite dimension extends to an isometry $V : H \to K \otimes E$ (for some finite-dimensional Hilbert space E) such that $\Phi(\rho) = \operatorname{tr}_E(V^{\dagger}\rho V)$ in an essentially unique way.

Huot and Staton noticed that the trace of a density matrix on H is the unique CPTP map $\mathcal{B}(H) \to \mathbb{C}$, so the tensor unit \mathbb{C} is *terminal* (**FHilb**_{CPTP} is *affine monoidal*).

Theorem (Huot and Staton): **FHilb**_{CPTP} is the *affine completion* of **Isometry** as a monoidal category.

- In **FHilb**_{CPTN}, this approach is *morally correct* but *technically unsound*. The 0-dimensional Hilbert space is a zero object (i.e., both initial and terminal) in **FHilb**_{CPTN}.
- The trace is no longer the unique map $\mathcal{B}(H) \to \mathbb{C}$, though it is the unique *trace-preserving map*.
- And what about Stinespring?

Theorem (Stinespring): Every CPTN map $\Phi : \mathcal{B}(H) \to \mathcal{B}(K)$ in finite dimension extends to a contraction $V : H \to K \otimes E$ (for some finite-dimensional Hilbert space E) such that $\Phi(\rho) = \operatorname{tr}_E(V^{\dagger}\rho V)$ in an essentially unique way.

Need to be a bit careful with "essentially unique": This is up to an *isometry* applied on the ancilla E, *not a contraction*.

In **Contraction**, the isometries are precisely the *dagger monics*: maps f such that $f^{\dagger} \circ f = id$.

Categorifying Stinespring (on partial maps)

Given a dagger monoidal category C, define a new category $L^t_\otimes({\bf C})$ in the following way:

- Objects: Objects of C.
- Morphisms: Morphisms $H \to K$ are equivalence classes of morphisms $H \to K \otimes E$.
- Identities and composition: Identities are inverse right unitors ρ_{\otimes}^{-1} , composition is

Theorem: $L^t_{\otimes}($ **Contraction** $) \cong$ **FHilb**_{CPTN}.

This construction is universal in that it makes the multiplicative unit *I* terminal for *total maps* (dagger monics). But it also has a more interesting property...

Consider a measurement in **FHilb**_{CPTN}: an idempotent $\mathcal{B}(H \oplus K) \rightarrow \mathcal{B}(H \oplus K)$ of block matrices mapping

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \mapsto \begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix}$$

In \mathbf{FCstar}_{CPTN} , this idempotent splits as a measurement $\mathcal{B}(H \oplus K) \rightarrow \mathcal{B}(H) \oplus \mathcal{B}(K)$

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \mapsto (A, D)$$

and a preparation $\mathcal{B}(H) \oplus \mathcal{B}(K) \to \mathcal{B}(H \oplus K)$.

$$(A,D)\mapsto \begin{pmatrix} A & 0\\ 0 & D \end{pmatrix}$$

But in **FHilb**_{CPTN}, it does not split at all!

By Artin-Wedderburn, \mathbf{FCstar}_{CPTN} has direct sums $\bigoplus_{i \in I} \mathcal{B}(H_i)$ of finite-dimensional $\mathcal{B}(H)$ s as objects.

FHilb_{CPTN} has just finite-dimensional $\mathcal{B}(H)$ s as objects.

Observation: For every finite-dimensional C*-algebra \mathscr{A} there exists a finite-dimensional Hilbert space H and a (specifically CPTN) measurement $p: \mathcal{B}(H) \to \mathcal{B}(H)$ such that the image of p is precisely \mathscr{A} .

Idea: Encode a finite-dimensional C*-algebra \mathscr{A} as a pair (H, p) of a Hilbert space H and a measurement $p: H \to H$ with $\operatorname{im}(p) = \mathscr{A}$.

- A CPTN map of encoded C*-algebras $(H, p) \rightarrow (K, q)$ is a CPTN map $f : \mathcal{B}(H) \rightarrow \mathcal{B}(K)$ satisfying $f = q \circ f \circ p$.
- This is the Karoubi envelope (but splitting only measurements)!

For a symmetric monoidal category ${\bf C},$ define a category ${\bf Split}_M({\bf C})$ with

- Objects: Pairs (H, p) of an object H of \mathbf{C} and a measurement* $p: H \to H$.
- Morphisms: Morphisms $(H, p) \to (K, q)$ of $\mathbf{Split}_M(\mathbf{C})$ are morphisms $f: H \to K$ of \mathbf{C} satisfying $q \circ f \circ p = f$.
- Identities: The identity $(H,p) \to (H,p)$ is $p: H \to H.$
- Composition: As in C.

The evident functor $\mathbf{C} \to \mathbf{Split}_M(\mathbf{C})$ is universal among functors into category where measurements of \mathbf{C} split.

Theorem: $\mathbf{Split}_{M}(\mathbf{FHilb}_{\mathrm{CPTN}}) \cong \mathbf{FCstar}_{\mathrm{CPTN}}.$

Universal properties isolate the precise features setting various quantum theories apart.

Universal constructions provide mechanical extensions to programming languages, along with extensible program semantics.

THE ACTUAL MEME ABSTRACT

