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Abstract. Previously, Soeken and Thomsen presented six basic seman-
tics-preserving rules for rewriting reversible logic circuits, defined using
the well-known diagrammatic notation of Feynman. While this notation is
both useful and intuitive for describing reversible circuits, its shortcomings
in generality complicates the specification of more sophisticated and
abstract rewriting rules.
In this paper, we introduce Ricercar, a general textual description language
for reversible logic circuits designed explicitly to support rewriting.
Taking the not gate and the identity gate as primitives, this language
allows circuits to be constructed using control gates, sequential composi-
tion, and ancillae, through a notion of ancilla scope. We show how the
above-mentioned rewriting rules are defined in this language, and extend
the rewriting system with five additional rules to introduce and modify
ancilla scope. This treatment of ancillae addresses the limitations of the
original rewriting system in rewriting circuits with ancillae in the general
case.
To set Ricercar on a theoretical foundation, we also define a permutation
semantics over symmetric groups and show how the operations over
permutations as transposition relate to the semantics of the language.

Keywords: Reversible logic, term rewriting, ancillae, circuit equivalence,
permutation

1 Introduction

In [14] two of the authors presented six elementary rules for rewriting reversible
circuits using mixed-polarity multiple-control Toffoli gates. Building on this, more
complex rules, such as moving and deletion rules, can be derived. Rewriting using
such rules can be used not just to reduce the size and cost of reversible circuits,
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but also to analyse and explain other optimisation approaches for reversible
circuits. As one example, the templates presented in [12] are all derivable from
these rewriting rules.

The rewriting rules in [14] are based on the diagrammatic notation first
introduced by Feynman. This notation gives a very intuitive description of
reversible circuits and the presented rewriting rules inherit this benefit. However,
one goal with rewriting is to provide computer aid to the design of reversible
circuits, and just as intuitive as diagrammatic notation is to understand for
humans, just as hard it is to model for computers. In particular, representing the
more general rules poses a problem.

In this paper we introduce Ricercar, a description language for reversible logic
circuits (Sect. 3.) inspired by work on a reversible combinator language [18] and
the logic of reversible structures [11]. Its only basic atoms are the not gate and the
identity gate (both with named wires) from which other circuits are constructed
using control gates and sequential composition. After describing the syntax and
semantics of the language, we show how to define the graphical rewriting rules
of [14] as textual rewriting rules for Ricercar descriptions (Sect. 4.) To give a
theoretical foundation for Ricercar, we also define a permutation semantics over
symmetric groups (Sect. 2) and show how the operations over permutations as
transposition relate to the semantics of the language (Sect. 3.3).

A notable feature of the language is that it directly supports ancillae. Since
reversible circuit logic does not support arbitrary fan-out, ancillae are often used
to store partial results from computations by means of reversible duplication.
The concept of ancillae have, however, been used in many different ways, but
in this work we take the most strict possible definition. By ancillae we mean a
variable (or a line) that are, for all possible assignments of other defined variables,
guaranteed to be unchanged over the execution of a circuit.

This definition is much more strict than what is normally characterised by
temporary storage, but it is needed if one wants to ensure that information is
leaked and, thus, the backwards semantics of the circuits can be used directly.
It is, however, still very useful in both high-level programs as well as reversible
circuit constructs. As an example, an n-bit binary adder of linear depth can be
implemented without ancillae, but it requires the use of reversible gates that
have n inputs. However, using just one ancilla line the linear depth V-shaped
adder [5, 20] is implemented using only gates with a constant number of inputs.
Furthermore, all current designs for implementing sub-linear depth adders require
a larger number of ancilla lines that is dependent on the input size [7, 17, 19].
Using a similar definition, the restore model [4] has been investigated with respect
to is computational complexity limits.

In Sect. 5 we discuss the ancilla scope construct of Ricercar and show five
basic rewriting rules for inserting and modifying ancilla wires (Sect. 5.1). This is
interesting given that deciding if a wire is indeed an ancilla wire is difficult; it
can generally be done using equivalence checking, which for reversible circuits
has been shown to be coNP-complete [10]. Furthermore, we show how to derive
more general rules (Sect. 5.2), and show a non-trivial and useful example of how
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these can be used to create reversible circuits with ancilla wires from ancilla-free
circuits (Sect. 5.3). As a result, the proposed rewriting language can serve as a
framework to formally analyse the trade-off between gate count and number of
ancilla lines in reversible circuits. Such trade-offs have so far been investigated
theoretically for Turing machines in e.g. [2, 3] and experimentally for reversible
circuit synthesis in [21]. We discuss further related work in Sect. 6.

The main contributions of the paper are the following:

1. An extension of the rewriting rules with rules for circuit rewriting using
ancillae.

2. A textual language to describe rewriting which is more concise than the
diagrammatic notation.

3. Semantics for the rewrite rules based on permutations that is useful to show
soundness of the rules and to formally argue over them.

2 Symmetric Groups as a Theory of Reversible Logic

Every reversible function f computed by a reversible circuit of n input lines
x1, . . . , xn and n output lines y1, . . . , yn can be represented by an element πf
of the symmetric group S2n , i.e., a permutation of the set {0, . . . , 2n − 1}. We
have πf (x) = y whenever f(x1, . . . , xn) = (y1, . . . , yn), where x and y denote the
natural number representations of the bits x1, . . . , xn and y1, . . . , yn, respectively.
This duality has been used for reversible logic synthesis in the last decade [6, 13],
but has also seen use as a theoretical foundation for the analysis of reversible
circuit logic [15,16].

Unlike the usual formulation of the symmetric group Sn, we will consider
its elements to be permutations of the set {0, . . . , n− 1} rather than {1, . . . , n}.
However, we will use the standard notation of writing explicit permutations using
square brackets, e.g. π = [0 1 3 2], cycles using parentheses, e.g. π = (2, 3), and
πe for the identity permutation. Under this interpretation, composition of gates
corresponds to multiplication (i.e., composition) of permutations.

The gate library we consider consists of only single-target gates, which are
characterised by changing one circuit line based on a control function that argues
over the variables of the remaining lines. Since all single-target gates are self-
inverse, their respective permutations are involutions with cycle representations
consisting of only transpositions and fixpoints. As pointed out in [15], all such
transpositions are of the form (a, b) where the hamming distance of a and b is 1,
i.e., their binary expansions differ in exactly one position. We refer to the set of
all such transpositions as

Hn = {(a, b) | ν(a⊕ b) = 1} (1)

where ν denotes the sideways sum. Note that each transposition (a, b) in Hn

corresponds to one fully controlled Toffoli gate with positive and negative control
lines, acting on line i, where i is the single index for which ai 6= bi. The polarity
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of the controls is chosen according to the other bits. Based on this observation,
we partition the set Hn into n sets Hn,1, Hn,2, . . . ,Hn,n such that

Hn,i = {(a, b) ∈ Hn | a⊕ b = 2i−1} (2)

contains all transpositions in which the components differ in their i-th bit. Single-
target gates that act on the target line i are all permutations that consist of a
subset of transpositions in Hn,i.

We call gn(f) ∈ S2n a transposition generation function which takes as
argument an injective function f : {0, . . . , 2n − 1} ↪→ {0, . . . , 2n − 1} and returns
the permutation

(0, f(0))(1, f(1)) · · · (2n − 1, f(2n − 1)) . (3)

3 Ricercar: A Description Language for Reversible Logic

In this section, we will explain the description language, Ricercar, that is used to
formulate the rewriting rules. We will first explain the syntax (Fig. 1) and then
show two ways to describe the semantics. MKT: Can be extended a bit if space
allows.

3.1 Syntax

Circuit wires (denoted by lower case Latin letters in the end of the alphabet:
. . . , x, y, z) are defined over a set of names Σ that includes both input/output
wires and ancilla wires currently in scope. (For wires without specific names, we
will use lower case Latin letters starting from a.) We define a circuit (denoted by
upper case Latin letters) to be one of the following five forms:

– The identity gate on a wire x, written Id(x), where x ∈ Σ.
– The not gate applied to a wire x, written Not(x), where x ∈ Σ.

A,B,C ::= Id(x) | Not(x) Identity and not gate

| A ; B Sequence of circuits

| φ� A Controlled circuit

| αx.A Scope of ancilla variable α; α is part of the syntax

φ, ψ, π ::= x | ¬φ | φ ∧ φ Boolean formulas

| > | ⊥ | φ ∨ φ | φ⊕ φ Derivable Boolean operators

Fig. 1: Syntax of Ricercar. Note that this grammar does not guarantee reversibility
in itself. By x we mean that variables occurring in Boolean formulas must be
elements from a predefined set of input/output wires or ancilla wires in scope.
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a •
b •
c •
d

(a ∧ b ∧ c)� Not(d)

(a) Three-controlled
Toffoli gate

a • •
b • •
c •
d
e = 0 • 0

αe.((a ∧ b)� Not(e) ; (c ∧ e)� Not(d) ; (a ∧ b)� Not(e))

(b) Sequence of Toffoli gates

Fig. 2: Two (weakly) equivalent reversible circuits and their descriptions in
Ricercar. Here, e denotes an arbitrary ancilla wire.

inv(Id(x)) = Id(x)

inv(Not(x)) = Not(x)

inv(A ; B) = inv(B) ; inv(A)

inv(φ� A) = φ� inv(A)
inv(αx.A) = αx. inv(A)

Fig. 3: The syntactic function inv(·) that defines the inverse of a Ricercar descrip-
tion.

– Sequential composition of two circuits, written using the operator “ ; ”.
– A controlled circuit, denoted with the binary “�” operator, which contains

a control function φ and a controlled circuit A.3 The control function can be
any Boolean formula.

– An ancilla scope for a circuit A, denoted with a functional lambda-style
notation using the symbol α, and a variable denoting a wire which must be
false both before and after A. Without loss of generality, we will assume that
ancillae scopes always introduces fresh variable names.

For readability, we define control gates (�) to bind tighter than sequence ( ; )
and the unary (αx. ).

Figure 2 shows two example circuits, defined using multiply controlled Toffoli
gates, represented in the usual diagram notation due to Feynman, as well as in
Ricercar.

As Ricercar should be reversible, we will define the straight-forward inverse
of all the syntactic constructs. We have chosen not to include inversion as a
basic construct, but will define it as a syntactic function; this simplifies both the
language and the following rewriting rules. Figure 3 shows the inversion function
inv(·).

3.2 Ancillae and Reversibly Well-Formed Properties

Ancillae hold a central place in Ricercar. We follow the idea that there are always
as many ancilla wires available as needed. Consequently ancilla lines do not
need to be declared in advance, but can be introduced on-the-fly. This is not an

3 The “�” notation is borrowed from [11], although with a different semantics.
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rwf(Id(x)) = {x}
rwf(Not(x)) = {x}

rwf(A ; B) = rwf(A) ∪ rwf(B)

rwf(φ� A) = dom(φ) ] rwf(A)
rwf(αx.A) = rwf(A)\{x}

Fig. 4: A reversible circuit, A, is reversibly well-formed iff rwf(A) evaluates to
a set. Here, ] is the disjoint union and dom(φ) is the domain of the Boolean
function φ. We assume that the disjoint union is undefined whenever the operands
are not disjoint.

unrealistic assumption: remember that we define ancillae to be constant (false)
at both input and output, which permits a large degree of reuse. Furthermore,
the actual number of ancilla lines used is limited by the depth of the circuit, and
cannot grow unboundedly. As an example, given that we know the upper bound
of the depth to implement a reversible circuit without ancillae (cf. [1]), this also
gives an upper bound on the number of (useful) ancilla any circuit with smaller
depth can have.

The syntax presented in Fig. 1 does not guarantee reversibility by itself. One
problem comes from the control gate, where we must enforce that the wires of
the control function are disjoint from wires of the circuit being controlled. This is
similar to the concept used in the reversible updates in Janus [22]. Figure 4 shows
a function rwf(·) that implements this check; we say that the circuit is reversibly
well-formed if it upholds this restriction. Given a circuit description A, it returns
the set of all used variable names if and only if A is reversibly well-formed. If a
circuit A is not reversibly well-formed, the disjoint union operation will fail on
the control gate operator, and the result of rwf(A) will thus be undefined.

However, even a reversibly well-formed circuit is not necessarily reversible.4

To ensure that an ancilla variable within an ancilla scope does indeed have ancilla
behaviour (guaranteed false at both input and output), we need a additional
semantic check. However, a circuit without ancillae is reversibly well-formed if
and only if it is reversible. In Sect. 5, we will show how this can be exploited to
introduce ancillae in a way that guarentees reversibility.

3.3 Operational Semantics

The straightforward semantics of Ricercar is shown in Fig. 5; they follow, but also
extend, the logic by Fredkin and Toffoli, and describe the mapping from a circuit
description to a reversible circuit using the well-known gates. More concretely,
this semantics can be used to show that Ricercar is actually reversible.

Theorem 1 (Reversibility). For all mappings σ and circuits A there exists a
mapping σ′ and a circuit B such that

σ ` A→ σ′ ⇐⇒ σ′ ` B → σ .

4 The other direction holds: all reversible circuits are reversibly well-formed.



Ricercar: Language for Rewriting Reversible Circuits with Ancillae 7

σ : Σ ⇀ B σ ` Id(x)→ σ

σ ` ¬x→ b

σ ` Not(x)→ σ[x 7→ b]
σ ` A→ σ′′ σ′′ ` B → σ′

σ ` A ; B → σ′

σ ` φ→ 1 σ ` A→ σ′

σ ` φ� A→ σ′
σ ` φ→ 0

σ ` φ� A→ σ

σ ` x→ b σ[x 7→ 0] ` A→ σ′ σ′ ` x→ 0

σ ` αx.A→ σ′[x 7→ b]

Fig. 5: The semantics of Ricercar. Here, σ is a partial function mapping variable
names to Boolean values; any variable name that is not part of the input is as-
sumed to be undefined in σ. The semantics uses two judgment forms, σ ` A→ σ′

for evaluating circuits, and σ ` φ→ b for evaluating Boolean formulae, both with
respect to σ. The rules for judgments of the latter form are not shown, but are
completely standard.

This theorem and the following two lemmas are easily proven by structural
induction over the circuit A and reference to the operational semantics of Ricercar
(Fig. 5).

To ensure that the previously defined inversion (with sequence as composition
function) is indeed inversion, we show the following.

Lemma 1 (Inversion). For all circuits A and states σ,

σ ` A ; inv(A)→ σ and σ ` inv(A) ; A→ σ .

Later it will also be useful to know that the inversion function respects involution
symmetry.

Lemma 2 (Involution Symmetry). For all circuits A, and states σ and σ′,

σ ` A→ σ′ ⇐⇒ σ ` inv(inv(A))→ σ′ .

3.4 Permutation (Denotational) Semantics

In order to ease the formal analyses using this language, we also express the
functional semantics in terms of permutations. The counterparts to Id, Not, and
‘�’ are provided for this purpose. In contrast to the language, the permutation
description requires an order of variables and therefore we assume a strict total
order ‘>’ on the variables in Σ for the following equations. If x > y, it means
that the variable x corresponds to a more significant bit than y. For the identity
and the not gate we have

Id(x) = πe and Not(x) = (0, 1) if Σ = {x} . (4)
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For the following four equations, let G(π, f) be the commutator gn(f) ◦ π ◦
g−1n (f) for a permutation π ∈ S2n and a function f as in (3). Note that G is an
endomorphism with respect to composition, since

G(π1 ◦ π2, f) = gn(f) ◦ π1 ◦ π2 ◦ g−1n (f)

= gn(f) ◦ π1 ◦ g−1n (f) ◦ gn(f) ◦ π2 ◦ g−1n (f)

= G(π1, f) ◦G(π2, f) .

For some circuit A, let πA be its permutation representation. Then one can “add
a control line from the bottom,” expressed as

¬x� A = G(πA, x 7→ x)
if Σ = rwf(A) ∪ {x}
and x > y for all y ∈ rwf(A)

(5)

and

x� A = G(πA, x 7→ x+ 2n)
with n = | rwf(A)|, if Σ = rwf(A)∪ {x}
and x > y for all y ∈ rwf(A) .

(6)

Similarly, one can “add a control line from the top,” expressed as

¬x� A = G(πA, x 7→ 2x)
if Σ = rwf(A) ∪ {x}
and x < y for all y ∈ rwf(A)

(7)

and

x� A = G(πA, x 7→ 2x+ 1)
if Σ = rwf(A) ∪ {x}
and x < y for all y ∈ rwf(A) .

(8)

The above denotational semantics is not complete. Circuit sequence ( ; ) can be
defined by permutation composition after extending the two permutations to the
same symmetric group, and scoped ancillae can be accommodated by imposing
restrictions on the permutation for the more general circuit (i.e., where the ancilla
is considered as any other input line.) It is then not hard to prove equivalence
between the operational and denotational semantics. The denotational semantics
is reversible by construction.

4 Rewriting in Ricercar

In this section, we will recap the rewriting rules from [14], and define the rules
with respect to Ricercar, as well as show soundness based on the permutation
semantics.

First, however, note that gate composition is associative; that is, in a cascade
of gates, the order in which we look at the gates does not matter, so in, e.g.
Fig. 2(b), we are free to either look at the two first gates and perform rewriting
on these, or start with the last two gates instead. The identity gate is the identity
element for sequences:

A = Id(x) ; A = A ; Id(x) (ID)
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Furthermore, note that we can always rewrite the controlling Boolean functions
and, e.g. use identities from AND-EXOR decomposition:

φ� ψ � A = (φ ∧ ψ)� A and

φ� A ; ψ � A = (φ⊕ ψ)� A if A = inv(A) .

Finally, implicit to rules is that the circuits must always be reversibly well-
formed both before and after a rewriting, and that in any given circuit we can
rewrite any sub-circuit we like.

The first rule presented in [14] is for introducing and eliminating not gates,
and states that we can always rewrite the identity function to two not gates.

x = Id(x) = Not(x) ; Not(x) (R1)

Soundness trivially follows from πe = (0, 1) ◦ (0, 1).
The second rule states that we can “move” a not gate over a control if we

negate the control line.

x •
=

y

x� Not(y) ; Not(x) =

Not(x) ; ¬x� Not(y) (R2)

Similar to [14], we notice that its dual rule with negative control can be
derived using this rule in combination with Rule R1:

¬x� Not(y) ; Not(x)
(R1)
= Not(x) ; Not(x) ; ¬x� Not(y) ; Not(x)

(R2)
= Not(x) ; x� Not(y) ; Not(x) ; Not(x)

(R1)
= Not(x) ; x� Not(y) . (R2’)

Soundness follows from Eqs. (5)–(8) and the identity (a, b)(b, c) = (a, c)(a, b) =
(a, c)(b, c).

Third, we can extend a gate by copying it and adding once a positive and
once a negative control line to it.

x •
=

y

Id(x) ; Not(y) =

x� Not(y) ; ¬x� Not(y) (R3)

Soundness follows from Eqs. (7) and (8). In fact, in permutation notation, both
controlled not gates are represented by a single transposition, and combining
them results in the (permutation corresponding to the) not gate. Also, combining
the equation of adding a negative and positive control yields an equation for
adding an empty line.

Next, two arbitrary adjacent gates can be interchanged whenever they have a
common control line with different polarities. Notice how Ricercar captures the
fact that two controlled circuits can have any circuit structure; something that
is not well captured by the diagrammatic notation in [14].
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x • •

A B = B A

x� A ; ¬x� B =

¬x� B ; x� A (R4)

The permutation equations also reveal this property, since the transpositions
resulting from ¬x� A and x� A are disjoint.

Whenever two gates share the same control variable with the same polarity,
these two gates can be grouped together, where the group is controlled by that
control line. Again, Ricercar allows for a precise formulation of the idea, compared
to the diagrammatic notation.

x • •
=

A B

•

A B
x� A ; x� B = x� (A ; B) (R5)

This property follows from G being an endomorphism. Finally, we have the rule
for introducing and eliminating groups of wires.

x •
=

y
x� Id(y) = Id(x) ; Id(y) (R6)

4.1 A Note on Completeness

A question raised in [14] regards the completeness of the above rules, in the sense
that every circuit can be rewritten, in a finite number of steps, to any other
equivalent circuit. In this strict sense, the rules are not complete. The counter
example is the two-line swap gate, which can be represented in the following two
ways:

• • •
=

• • •

Given the six rules, it is not possible to rewrite one to the other. This is, of course,
not satisfactory, and a shortcoming that must be solved. The easy solution would
be to add the above equation as a seventh rule, but the extent to which there
exist other counter examples related to this problem is unknown, and the solution
is only an incremental extension that will not add any interesting new insights.

However, this counter example is restricted in that it does not generalise to
more lines. If we have a third line available (no matter its value), it can be used as
an auxiliary line and thereby enable rewriting between the two swap gates. The
question is now if the six rules are complete for circuits of more than two lines.
But there is a possibility that two similar three line circuits exist and we need to
assume a fourth auxiliary line to rewrite between them. The better solution, that
we will follow in the next section, is thus to extend with rules for ancilla lines.
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5 Ancillae and Rewriting

As mentioned earlier, ancillae is a powerful extension to a reversible language,
but the power comes at a cost. Checking that some defined ancillae are indeed
unchanged for all possible input vectors of an arbitrary description is hard; in
general, one has to test all possible input vectors, which is undesirable. For a
reversible programming language such as Janus [22], this is therefore implemented
as a runtime check that checks the reversibility of a program only in relation
to the executing input vector. This is also the case for the syntax described in
Fig. 1.

For this reason, we will pursue a different approach. Given a description
without ancillae, we can statically check reversibility using the rwf-function
shown in Fig. 4. From a reversible description without ancillae, we will now
define rewriting rules that can extend the given description with ancilla wires.
Hence, instead of showing reversibility of a description with ancillae (which is
hard), we only have to show that the rewriting rules do not interfere with the
ancilla-property of the wires, and thereby with the reversibility of the circuit;
this is much easier.

5.1 The Rewriting Rules

To be able to introduce and remove ancilla wires from a circuit, we have identified
the need for five basic rules.

The first rule is for introducing and removing an ancilla scope. It states that
we can always introduce a scope containing the identity circuit with a fresh
(unused) ancilla wire name.

x =
y

Id(x) = αy.Id(x) (A1)

The second rule states that a circuit in an ancilla scope can be removed (or
added) if it is controlled by the ancilla wire. Recall that the ancilla variable is
assumed to be assigned false outside of the ancilla scope, so the control is never
active. For now, the gate must be the only gate within the scope, but we will
show how this can be generalised later.

y •
=

x A
y y

αy.(y � A) = αy.Id(x), x ∈ rwf(A)
(A2)

The third rule considers the case in which the controlling wire is not the
ancilla wire of the scope. In this case, the control can be pulled out of the ancilla
scope, and thereby control the scope containing the controlled circuit.
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x • •
=

A A
y y

αy.(x� A) = x� αy.A, x 6= y (A3)

The fourth rules states that a not gate on a non-ancilla wire that is positioned
to the immediate left of a circuit it shares a scope with can be pulled out of the
ancilla scope.

x
A A=

y y

αy.(Not(x) ; A) =

Not(x) ; αy.A, x 6= y (A4)

In the case where the not gate is on the right, a similar rule can be derived
from the Involution Symmetry Lemma with Rule A4.

x
A A=

y y

αy.(A ; Not(x)) =

(αy.A) ; Not(x), x 6= y (A4’)

The fifth and final rule states that if (and only if) an ancilla scope contains a
sequence of two circuits where the first is positively controlled, and the second is
negatively controlled by the same wire, then this scope can be divided into two;
or, in the other direction, merged. Note that x can be equal to y. This rule is
likely the most powerful of the five, and it shows up in the proofs that extend
and generalise the previous rules.

x • •
=

A B A B
y y y

αy.(x� A ; ¬x� B) =

(αy.x� A) ; (αy.¬x� B) (A5)

That the first four rules (A1 to A4) do not interfere with the ancilla-property
of a wire is clear, but the last rule (A5) requires an argument. Only either A or
B (but not both) is performed as the control on x is exclusive. Thus assuming
that x 6= y, any usage of y in A must have uncomputed y to zero again; similarly
any usage of y in B must have assumed it to be zero. Therefore, we can divide
the ancilla scope of y. If x = y then y will always be unchanged (zero) as y is
not used in B.

5.2 Generalisation of Ancilla Rules

Rule A2 has a twin-rule for the case where the gate is negatively controlled by
the ancilla wire. We can derive that this is equal to the controlled gate in the
following way:
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αy.(¬y � A)
(ID)
= Id(x) ; (αy.¬y � A)

(A1)
= (αy.Id(x)) ; (αy.¬y � A)

(A2)
= (αy.y � A) ; (αy.¬y � A)

(A5)
= αy.(y � A ; ¬y � A)

(R3)
= αy.A . (A2’)

This twin-rule can now be used to show the more general rule that if an
ancilla wire controls a circuit in the beginning of a scope it can be removed
entirely:

αy.(y � A ; B)
(R3)
= αy.(y � A ; y � B ; ¬y � B)

(R5)
= αy.(y � (A ; B) ; ¬α� .B)

(A5)
= (αy.y � (A ; B)) ; (αy.¬y � B)

(A2)
= (αy.Id(x)) ; (αy.¬y � B)

(A2’)
= (αy.Id(x)) ; (αy.B)

(A1)
= Id(x) ; αy.B

(ID)
= αy.B . (D8)

Similarly, we can also generalise A3 to the case where the circuit in the ancilla
scope contains more than one gate. Assuming that x 6= y, to extract x from the
ancilla scope of y we can do

αy.x� A ; B
(R3)
= αy.(x� A ; x� B ; ¬x� B)

(R5)
= αy.(x� (A ; B) ; ¬x� B)

(A5)
= (αy.x� (A ; B)) ; (αy.¬x� B)

(A3)
= x� (αy.(A ; B)) ; ¬x� αy.B . (D9)

This duplicates B such that it is performed both when x is true, and when it is
false. Assuming that the ancilla wire y does not occur in A (i.e. y /∈ rwf(A)), we
can then use D9 to show by induction on the depth of the control that

αy.(A ; B) = A ; αy.B, y /∈ rwf(A) . (D10)

As a special case of this rule, specifically when B = Id(x) for any choice of
x ∈ rwf(A) ∪ {y}, we get that

αy.A = A, y /∈ rwf(A) . (D11)

As a closing derived rule, we will show how ancilla wires can be introduced to
perform computations that were otherwise performed by an input wire. In other
words, we can use the rules to introduce ancilla wires that are then used to
control what was previously controlled by x.

x� A
(D11)

= αy.(x� A ; Id(y))

(D1)
= αy.(x� A ; x� y ; x� y)

(D8)
= αy.(y � A ; x� A ; x� y ; x� y)

(D6)
= αy.(x� A ; y � A ; x� y ; x� y)

(D7)
= αy.(x� y ; y � A ; x� y) . (D12)
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Here D1, D6, and D7 refer to derived rules from [14]. This example increases
the size and depth of the circuit, but if x controls several gates this can be used
to reduce the depth of the circuit considering that gates can be put in parallel.

5.3 Practical Example of Application of Ricercar

As a final example we show how to derive the circuit depicted in Fig. 2(b) from
the one in Fig. 2(a) using the rewriting rules. Again D1 and D7 refer to derived
rules from [14].

(a ∧ b ∧ c)� Not(d)

(D11)
= αe.((a ∧ b ∧ c)� Not(d))

(D8)
= αe.((c ∧ β)� Not(d) ; (a ∧ b ∧ c)� Not(d))

(D1)
= αe.((a ∧ b)� Not(e) ; (a ∧ b)� Not(e) ; (c ∧ e)� Not(d) ;

(a ∧ b ∧ c)� Not(d))

(D7)
= αe.((a ∧ b)� Not(e) ; (c ∧ e)� Not(d) ; (a ∧ b)� Not(e) ;

(a ∧ b ∧ c)� Not(d) ; (a ∧ b ∧ c)� Not(d))

(D1)
= αe.((a ∧ b)� Not(e) ; (c ∧ e)� Not(d) ; (a ∧ b)� Not(e)) .

6 Related Work

This is not the first language that has been designed to describe the concepts of
reversible logic; there exist description languages for both reversible and quantum
circuits.

The closest related work is the Reversible Combinator Language (RCL) [18]
that was also made to describe reversible logic; though it is more general than
our work, there are still some common ideas. Taking inspiration from RCL, we
use a similar sequence operator, and the conditional in RCL is (in its semantics)
comparable to our control operator. However, being a combinator language, RCL
does not have variables, but rather a type system in which circuits of arbitrary
size with a given structure can be defined. Also it has more general combinators,
such as a ripple circuit and parallel composition, as basic constructs. RCL also
admits a number of rewriting rules, but compared to Ricercar, RCL’s type system
and larger set of atomic gates makes rewriting more cumbersome.

Although aiming to describe quantum circuits, it is worth mentioning Quip-
per [8, 9]. Though Quipper also supports ancilla scopes, in order to uphold
the ancilla-property, the Quipper synthesis results in a symmetric compute-use-
uncompute “Bennett-style” structure of the ancilla wires. In contrast, the ancilla
scopes in Ricercar are more general, but have to be built from the bottom up
with rewriting to uphold the property. The interested reader can find further
references for quantum description languages in the works above.
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7 Conclusion

In this paper we have presented Ricercar, a language designed to describe re-
versible circuits. A main focus during the design process of the language has
been rewriting, specifically that rewriting rules should be easy to both define and
apply in the language. The previous approach to rewriting of reversible circuits
was shown for the standard diagrammatic notation, but this notation neither
captures the full intent of all of the six original rules, nor does it provide an
optimal setting for a future computer aided system. Ricercar, with its simple
symbolic description, both captures the complete intent of the original rules, and
has a syntax that is directly implementable.

In addition, Ricercar has support for ancillae as a basic circuit construct in
the form of a scope. Using this construct, we have extended the six original rules
with five basic rules that applies when rewriting ancillae. We have shown how
it is possible to use these rules to derive more general ones that also apply to
ancillae, and as a final example, how to derive a rule that moves the control of a
gate from an input wire to an ancilla wire.

Determining reversibility of a circuit that contains ancillae is generally hard,
but with the presented rewriting rules, it is possible to take an ancillae-free
circuit (for which it is easy to show reversibility) and rewrite it into a circuit
that contains ancillae, and is guaranteed to be reversible. The key here is that
the basic rules (and all of the derived rules) cannot break the ancilla-property of
a wire and, thus, the reversibility of the circuit.

We hope that this approach can further help in the understanding of the
trade-off between ancillae on the one hand, and the size and depth of a reversible
circuit on the other.
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