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Abstract. This paper presents CoreFun, a typed reversible functional
language, which seeks to reduce typed reversible functional programming
to its essentials. We present a complete formal definition of the language,
including its formal semantics and type system, the latter of which is based
on a combined reasoning logical system of unrestricted and relevantly
typed terms, and allows special support for ancillary (read-only) variables
through its unrestricted fragment. We show how, in many cases, the type
system provides the possibility to statically check for the reversibility of
programs. Finally, we detail how higher-level language features such as
variants and type classes may be incorporated into CoreFun as syntactic
sugar, such that CoreFun may be used as a core language for a reversible
functional language in a more modern style.
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1 Introduction

Reversible computing is the study of computational models in which individual
computation steps can be uniquely and unambiguously inverted. For programming
languages, this means languages in which programs can be run backward and
get a unique result (the exact input). In this paper, we restrict ourselves to
garbage-free reversible programming languages, which guarantee not only that all
programs are reversible, but also that no hidden duplication of data is required
in order to make this guarantee.

In this paper we present a simple, but r-Turing complete [2], reversible typed
functional programming language, CoreFun. Functional languages and program-
ming constructs are currently quite successful; this includes both applications in
special domains, e.g. Erlang, and functional constructs introduced in mainstream
programming languages, such as Java and C++. We believe that functional
languages also provide a suitable environment for studying reversible programs
and computations, as recently shown in [19]. However, the lack of a type system
exposed the limitations of the original RFun language, which has motivated this
work. A carefully designed type system can provide better handling of static



information through the introduction of ancillae typed variables, which are guar-
anteed to be unchanged across function calls. Further, it can often be used to
statically verify the first match policy that is essential to reversibility of partially
defined functions. It should be noted that this type system is not meant to
guarantee reversibility of well-typed programs (rather, guaranteeing reversibility
is a job for the semantics). Instead, the type system aids in the clarity of ex-
pression for programs, provides fundamental well-behavedness guarantees, and
is a source of additional static information which can enable static checking of
certain properties, such as the aforementioned first-match policy.

An implementation of the work in this paper can be found at

https://github.com/diku-dk/coreFun/

1.1 Background

Initial studies of reversible (or information lossless) computationdateback to the
years around 1960. These studies were based on quite different computation mod-
els and motivations: Huffman studied information lossless finite state machines
for their applications in data transmission [7], Landauer came to study reversible
logic in his quest to determine the sources of energy dissipation in a computing
system [9], and Lecerf studied reversible Turing machines for their theoretical
properties [10].

Although the field is often motivated by a desire for energy and entropy
preservation though the work of Landauer [9], we are more interested in the
possibility to use reversibility as a property that can aid in the execution of a
system, an approach which can be credited to Huffman [7]. It has since been
used in areas like programming languagesfor quantum computation [6], parallel
computing [16], and even robotics [17]. This diversity motivates studying reversible
functional programming (and other paradigms) independently, such that we can
get a better understanding of how to improve reversible programming in these
diverse areas.

The earliest reversible programming language (to the authors’ knowledge) is
Janus, an imperative language invented in the 1980’s, and later rediscovered [11,23]
as interest in reversible computation spread. Janus (and languages deriving from
it) have since been studied in detail, so that we today have a reasonably good
understanding of these kinds of reversible flowchart languages [5,22].

Reversible functional programming languages are still at an early stage of
development, and today only a few proof-of-concept languages exist. This work
is founded on the initial work on RFun [19,21], while another notable example of
a reversible functional language is Theseus [8], which has recently been further
developed towards a language for quantum computations [15].

The type system formulated here is based on relevance logic (originally
introduced in [1], see also [3]), a substructural logic similar to linear logic [4, 20]
which (unlike linear logic) permits the duplication of data. In reversible functional
programming, linear type systems (see e.g. [8]) have played an important role in
ensuring reversibility, but they also appear in modern languages like the Rust



programming language. To support ancillary variables at the type level, we adapt
a type system inspired by Polakow’s combined reasoning system of ordered, linear,
and unrestricted intuitionistic logic [14].

The rest of this paper is organised in the following way: In Sect. 2 we will first
introduce CoreFun followed by the type system and operational semantics. We
also discuss type polymorphism and show that the language is indeed reversible.
In Sect. 3 we will show how the type system in some cases can be used to statically
verify the first match policy. In Sect. 4 we show how syntactic sugar can be
used to design a more modern style functional language from CoreFun. Finally in
Sect. 5 we conclude.

2 Formalisation of CoreFun

The following section will present the formalisation of CoreFun. The language
is intended to be minimal, but it will still accommodate future extensions to
a modern style functional language. We first present a core language syntax,
which will work as the base of all formal analysis. Subsequently we present typing
rules and operational semantics over this language. The following is build on
knowledge about implementation of type systems as explained in [12].

2.1 Grammar

A program is a collection of zero or more function definitions. Each definition
must be defined over some number of input variables as constant functions are
not interesting is a reversible setting. All function definitions will in interpretation
be available though a static context. A typing of a program is synonymous with
a typing of each function. A function is identified by a name f and takes 0 or
more type parameters, and 1 or more formal parameters as inputs. Each formal
parameter x is associated with a typing term 7 at the time of definition for each
function, which may be one of the type variables given as type parameter. The
grammar is given in Fig. 1.

2.2 Type system

Linear logic is the foundation for linear type theory. In linear logic, each hypothesis
must be used exactly once. Likewise, values which belong to a linear type must
be used exactly once, and may not be duplicated nor destroyed. However, if we
accept that functions may be partial (a necessity for r-Turing completeness [2]),
first-order data may be duplicated reversibly. For this reason, we may relax the
linearity constraint to relevance, that is that all available variables must be used
at least once.

A useful concept in reversible programming is access to ancillae, i.e. values
that remain unchanged across function calls. Such values are often used as a
means to guarantee reversibility in a straightforward manner. To support such
ancillary variables at the type level, a type system inspired by Polakows combined



qu=d" Program definition

du=fa* v =e Function definition
en=2x Variable name

| () Unit term

| inl(e) Left of sum term

| inr(e) Right of sum term

| (e,e) Product term

|let l=ein e Let-in expression

| case e of inl(z) = e,inr(y) = e Case-of expression

| fa* et Function application

| roll [7] e Recursive-type construction

| unroll [7] e Recursive-type deconstruction
lu=x Definition of variable

| (z,z) Definition of product
V=X Ta Variable declaration

Fig. 1: Grammar of CoreFun. Program variables are denoted by z, and type
variables by a.

Tru=Tp T | T T | T T | VX
Tu=1lrx7|74+7 | X | puX1

Toi=T|T& T

Fig. 2: Typing terms. Note that X in this figure denotes any type variable.

reasoning system of ordered, linear, and unrestricted intuitionistic logic [14] is
used. The type system splits the typing contexts into two parts: a static one
(containing ancillary variables and other static parts of the environment), and a
dynamic one (containing variables not considered ancillary). This gives a typing
judgment of X; I" - e : 7, where X' is the static context and I' is the dynamic
context.

We discern between two sets of typing terms: primitive types and arrow types.
This is motivated by a need to be careful about how we allow manipulation of
functions, as we will treat all functions as statically known.

The grammar for typing terms can be seen in Fig. 2: 7; denotes arrow types,
T primitive types, and 7, ancillary types (i.e., types of data that may be given as
ancillary data).

Arrow types are types assigned to functions. For arrow types, we discern
between primitive types and arrow types in the right component of unidirectional
application. We only allow primitive types in bidirectional application. This is to
restrict ancillary parameters to be bound to functions, resulting in a second-order
language. It is ill-formed for an type bound in the dynamic context to be of an
arrow type — in this case we would be defining a higher-order language, where



functions may return new functions, which would break our assumption that all
functions are statically known.

Primitive types are types assigned to expressions which evaluate to canonical
values by the big step semantics. These are distinctly standard, containing sum
types and product types, as well as (rank-1) parametric polymorphic types! and
a fix point operator for recursive data types (see [13] for an introduction to the
latter two concepts).

Throughout this paper, we will write 71 4 - - - + 7, for the nested sum type
1+ (72 + (- 4+ (Tn1+7n) - -+ ) and equivalently for product types 7 X - -+ X 7,.
Similarly, as is usual, we will let arrows associate to the right.

Type rules for expressions. The typing rules for expressions are shown in
Fig. 3. A combination of two features of the typing rules enforces relevant typing:
(1) the restriction on the contents of the dynamic context during certain typing
rules, and (2) the union operator on dynamic contexts in any rule with more
than one premise.

The rules for application are split into three different rules, corresponding to
application of dynamic parameters (T-APP1), application of static parameters
(T-APP2), and type instantiation for polymorphic functions (T-PAPP). Notice
further the somewhat odd T-UNIT-ELM rule. Since relevant type systems treat
variables as resources that must be consumed, specific rules are required when
data can safely be discarded (such as the case for data of unit type). What this
rule essentially states is that any expression of unit type can be safely discarded;
this is dual to the T-UNIT rule, which states that the unique value () of unit
type can be freely produced (i.e., in the empty context).

Variable Typing Restriction When applying certain axiomatic type rules (T-VAR1
and T-UNIT), we require the dynamic context to be empty. This is necessary
to inhibit unused parts of the dynamic context from being accidentally “spilled”
through the use of these rules. Simultaneously, we require that when we do use a
variable from the dynamic context, the dynamic context contains exactly this
variable and nothing else. This requirement prohibits the same sort of spilling.

Dynamic Context Union The union of the dynamic context is a method for
splitting up the dynamic context into named parts, which can then be used
separately in the premises of the rule. In logical derivations, splitting the known
hypotheses is usually written as I, I = ..., but we deliberately introduce a union
operator to signify that we allow an overlap in the splitting of the hypotheses.
Were we not to allow overlapping, typing would indeed be linear. For example, a
possible split is:

1 A rank-1 polymorphic system may not instantiate type variables with polymorphic
types.
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Fig. 3: Expression typing.

Gz Ly 1h... Gy lze1F...
Pix—ly—1,z—1F...

Here y is part of the dynamic context in both premises.

Type rules for function declarations. The typing rules for function declara-
tions are shown in Fig. 4. Here T-PFUN generalizes the type arguments, next
T-FUN1 consumes the ancillary variables, and finally T-FUN2 handles the last
dynamic variable but applying the expression typing.

We implicitly assume that pointers to previously defined functions are placed
in the static context X' as an initial step. For example, when typing an expression
e in a program where a function f = = e is defined, and we have been able to



Judgement: Y d: 71

. + 5 . e
Yx:tab foi=e:7y T-FUN2: Yi(x—T1)Fe:T

T-Funl:
b faoravt=e:1y =7y Yvfaror=e:To 1

S fB vt =e:Ts
Xk faprot=e:Vary
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Fig. 4: Function typing.

establish that X = f z = e : 7 ++ 7 for some types 7,7’, we assume that a
variable f : 7 <> 7/ is placed in the static context in which we will type e ahead
of time. This initial step amounts to a typing rule for the full program.

Note that we write two very similar application rules T-AppP1 and T-APP2.
This discerns between function application of ancillary and dynamic data, corre-
sponding to the two different arrow types. In particular, as shown in T-APP1,
application in the dynamic variable of a function is only possible when that
function is of type 7 <> 7/, where 7 and 7/ are non-arrow types: This specifically
disallows higher-order functions.

2.3 Recursive and polymorphic types

The type theory of CoreFun supports both recursive types as well as rank-1
parametrically polymorphic types. To support both of these, type variables,
which serve as holes that may be plugged by other types, are used.

For recursive types, we employ a standard treatment of iso-recursive types in
which explicit roll and unroll constructs are added to witness the isomorphism
between pX.7 and 7[uX.7/X] for a given type 7 (which, naturally, may contain
the type variable X). For a type 7, we let TV(7) denote the set of type variables
that appear free in 7. For example, the type of lists of a given type 7 can be
expressed as the recursive type pX.1+ (7 x X), and TV(1 + (7 x X)) = {X}
when the type 7 contains no free type variables. We define TV on contexts as
TV(X)={veTV(r)|z: 7€ X}

For polymorphism, we use an approach similar to System F, restricted to rank-
1 polymorphism. In a polymorphic type system with rank-1 polymorphism, type
variables themselves cannot be instantiated with polymorphic types, but must be
instantiated with concrete types instead. While this approach is significantly more
restrictive than the full polymorphism of System F, it is expressive enough that
many practical polymorphic functions may be expressed (e.g. ML and Haskell
both employ a form of rank-1 polymorphism), while being simple enough that
type inference is often both decidable and feasible in practice.



¢ == () |inl(c) | inr(c) | (c1,¢2) | roll [1] ¢

Fig.5: Canonical forms.

2.4 Operational Semantics

We present a call-by-value big step operational semantics on expressions in Fig. 6,
with canonical forms shown in Fig. 5. As is customary with functional languages,
we use substitution (defined as usual by structural induction on expressions) to
associate free variables with values (canonical forms). Since the language does
not allow for values of function type, we instead use an environment p of function
definitions in order to perform computations in a context (such as a program)
with previously defined functions.

Judgement: ptFe | c

A . prele . pkele
FOELEOT0 Y i i) b ine(e) L
phelc pkelroll [7] c
E- : E- :
RoLL prkroll [r] e L roll [7] ¢ UNROLL pkunroll [r] el c
E-PRob: phela phele ELpr pkeila P|_.€2[C1/x}¢c
pt(e1,e2) | (c1,c2) phlet =€ inex | c

pteil(c,c2) phela/ze/ylc
pklet (z,y) =e1inexlc

E-LETP:

pkellinl(c1) plkesfei/z]lc
p b case e; of inl(z) = ez, inr(y) = es3 | ¢

E-CAseL:

pkeilinr(ci) phresfa/yllc
pt case e; of inl(z) = ez, inr(y) = e3 | ¢

E-CASER: ¢ ¢ PLVal(e)

prelei--pkendcn ptelei/z1, -+, en/zn] e

E-App: p(f)=for--am x1--

pEfor--ramer - enlc

Fig. 6: Big step semantics of CoreFun.

A common problem in reversible programming is to ensure that branching of
programs is done in such a way as to uniquely determine in the backward direction
which branch was taken in the forward direction. Since case-expressions allow
for such branching, we will need to define some rather complicated machinery of
leaf expressions, possible leaf values, and leaves (the latter is similar to what is
also used in [21]) in order to give their semantics.

“XTnp =€



leaves(()) = {()}
leaves((e1, e2)) = {(e1, e5) | ] € leaves(e1),
ey € leaves(e2)}

{ml e'

~—

leaves(inl(e | €' € leaves(e) }
’

{inr(e \e € leaves(e) }

~—

leaves(inr(e

leaves(roll [r] ) = {roll [r] ¢’ | €’ € leaves(e)}

leaves(e2) U leaves(es)

) =
) =
)= [
leaves(let | = e1 in e2) = leaves(ez)
leaves(case e; of inl(z) = ez, inr(y) = e3) = (
leaves(z) = {z}
leaves(unroll [7] e) = {unroll [1] €' | ¢’ € leaves(e)}
)=

leaves(f e ... en) ={f el ... e, | e; € leaves(e;)}

Fig. 7: Definition function that computes the leaves of a program.

Say that an expression e is a leaf expression if it does not contain any subex-
pression (including itself) of the form let [ = e; in ez or case e; of inl(z) =
e, inr(y) = es; the collection of leaf expressions form a set, LExpr. As the name
suggests, a leaf expression is an expression that can be considered as a leaf of
another expression. The set of leaves of an expression e, denoted leaves(e), is
defined in Fig. 7.

The leaves of an expression are, in a sense, an abstract over-approximation of
its possible values, save for the fact that leaves may be leaf expressions rather
than mere canonical forms. We make this somewhat more concrete with the
definition of the possible leaf values of an expression e, defined as

PLVal(e) = {¢’ € LExpr | €’ € leaves(e), e’ > €"} (1)

where the relation — > — on leaf expressions is defined inductively as (the
symmetric closure of)

00

(e1,€2) B> (€], €5) if e;>e} and ey > €
inl(e) &> inl(e’) if ex>é
inr(e) > inr(e’) if ex>é

roll [7] er>roll [7] ¢’ if e>eé
e x
e>fer ... e,

e > unroll [7] ¢’

As such, the set PLVal(e) is the set of leaf expressions that can be unified, in
a certain sense, with a leaf of e. Since variables, function applications, and unrolls



do nothing to describe the syntactic form of possible results, we define that
these may be unified with any expression. As such, using PLVal(e) is somewhat
conservative in that it may reject definitions that are in fact reversible. Note also
that PLVal(e) specifically includes all canonical forms that could be produced by
e, since all canonical forms are leaf expressions as well.

In this way, if we can ensure that a canonical form ¢ produced by a branch in
a case-expression could not possibly have been produced by a previous branch
in the case-expression, we know, in the backward direction, that ¢ must have
been produced by the current branch. This is precisely the reason for the side
condition of ¢ ¢ PLVal(ez) on E-CASER, as this conservatively guarantees that ¢
could not have been produced by the previous branch.

It should be noted that for iterative functions this may add a multiplicative
execution overhead that is equal to the size of the data structure. It was previously
shown in [18], where a plus over Peano numbers which was linear recursive over
an input number, actually had quadratic runtime. There seems to be a relation
between this and normal functional programs implemented in a non-tail-recursive
fashion. However, details on this must be left for future work.

It is immediate that should it not hold for an arbitrary expression €', no
derivation is possible by the side condition, and the expression does not evaluate
to a value. It is thus possible for a function to only be defined for certain elements
of the domains of some its parameters. Later, we will look at exactly when we
can statically guarantee that the side condition will hold for every possible value
of the domains of the parameters.

We capture the conservative correctness of our definition of PLVal(e) with
respect to the operational semantics — i.e., the property that any canonical form
c arising from the evaluation of an expression e will also be “predicted” by PLVal
in the sense that ¢ € PLVal(e) — in the following theorem:

Theorem 1. Ifpt e | ¢ then ¢ € PLVal(e).
Proof. By induction on the structure of the derivation of p e | c.

The proof is mostly straightforward: The case for E-UNIT follows trivially, as
do the cases for E-UNROLL and E-APP since leaves of unroll [7] e (respectively
f e -+ ey) are all of the form unroll [7] € (respectively f e} --- el), and
since €’ > unroll [7] €’ (respectively ¢’ > f €] --- e]) for any choice of e”, it
follows that PLVal(unroll [7] ¢/) = PLVal(f e; --- e,) = LExpr. The cases for
E-INL, E-INR, E-RoLL, and E-PROD all follow straightforwardly by induction,
noting that PLVal(inl(e)) = {inl(¢’) | ¢’ € PLVal(e)}, and similarly for inr(e),
(e1,e2), and roll [7] e. This leaves only the cases for let and case expressions,
which follow using the following lemma:

Lemma 1. For any expression e, variables x1,...,x,, and canonical forms

Cly- - Cn, PLVal(e[c1/x1, ..., cn/zn]) € PLVal(e).

This lemma follows straightforwardly by structural induction on e, noting that
it suffices to consider the case where e is open with free variables z1,...,z,, as



it holds trivially when e is closed (or when its free variables are disjoint from
X1,y ..., &y). With this lemma, showing the case for, e.g., E-LET is straightforward
since ¢ € PLVal(ez[c1/x]) by induction, and since PLVal(ez[c1/x]) € PLVal(ez)
by this lemma, so ¢ € PLVal(ez) = PLVal(let z = e; in e3) by leaves(let z =
e1 in ey) = leaves(eg).

2.5 Reversibility

Showing that the operational semantics are reversible amounts to showing that
they exhibit both forward and backward determinism. Showing forward determin-
ism is standard for any programming language (and holds straightforwardly in
CoreFun as well), but backward determinism is unique to reversible programming
languages. Before we proceed, we recall the usual terminology of open and closed
expressions: Say that an expression e is closed if it contains no free (unbound)
variables, and open otherwise.

Unlike imperative languages, where backward determinism is straightforwardly
expressed as a property of the reduction relation o - ¢ | o’, backward determinism
is somewhat more difficult to express for functional languages, as the obvious
analogue — that is, if e | ¢ and €’ | ¢ then e = €’ — is much too restrictive
(specifically, it is obviously not satisfied in all but the most trivial reversible
functional languages). A more suitable notion turns out to be a contextual one,
where rather than considering the reduction behaviour of closed expressions in
themselves, we consider the reduction behaviour of canonical forms in a given
context (in the form of an open expression) instead.

Theorem 2 (Contextual backward determinism). For all open expressions
e with free variables x1, . .., Ty, and all canonical forms vy, ..., v, and wy, ..., wy,
ifpkelvi/x1,...,0n/xn] d c and p b elwr/x1, ..., wy/x,] | ¢ then v; = w; for
alll <i<n.

The proof of this theorem follows by induction on the structure of e. The only
interesting case is for case-expressions, where the side condition of the E-CASER
rule has to be applied. We notice that injectivity of functions follows as a pleasant
corollary:

Corollary 1 (Injectivity). For all functions f and canonical forms v,w, if
pEfouvlcandpk fwlcthenv=w.

Proof. Let e be the open expression f x (with free variable ). Since (f z)[v/x] =

fvand (f z)lw/x] = f w, applying Theorem 2 on e yields precisely that if
pkEfvlcand pk f wl cthen v =w. a

3 Statically checking the first match policy

The first match policy is essential when ensuring reversibility of partial functions.
It is, unfortunately, a property that can only be fully guaranteed at run-time;



from Rice’s theorem we know that all non-trivial semantic properties of programs
are undecidable. However, with the type system, we can now in many cases
resolve the first match policy statically.

For normal programs, we differentiate between two notions of divergence: (1)
A function may have inputs that do not result in program termination. (2) A
function may have inputs for which it does not have a defined behaviour; this
could be the result of missing clauses.

Note that the semantics of CoreFun dictate that if a computation diverges in
the forward direction, no backward computation can result in this specific input.
Similarly for backwards computations. If the program diverges in the forward
direction and not in the backward direction, we should be able to find some
input to the inverse function which results in the diverging input in the forward
direction. Since the inverse direction converges, we have determined a result in
the forward direction, which is a contradiction.

Non-termination is not the property we will address here, but rather inputs
for which the function is not defined. Because the first match policy is enforced by
the operational semantics, it follows that whenever an expression does not uphold
the first match policy, it cannot be derived. Thus, the domain of a function might
not be the complete underlying set of its types, because some element in an
underlying type may make the first match policy fail. We wish to investigate
exactly when can or when we cannot guarantee that a function is going to uphold
the first match policy for all elements of the types of its parameters. In some
ways this is reminiscent of arguing for totality of a function in mathematics.
This property of totality is not symmetric: More specifically, a function f and
the inverse function f~!' might not both be total on their respective domains
although it is certainly possible.

The type system can aid us in the endeavour of guaranteeing the first match
policy. It formally hints us at the underlying sets of values which occur in
case-expressions.

3.1 First match over open terms

Intuitively, when the range of a function call is well-defined (typed), and all the
leaves are disjoint, it is clear that any evaluated term will not match any other
leaf. For example, the following function performs a transformation on a sum
term, and all leaves are disjoint; either inl(-) or inr(-).

fx:1+7=casex of

inl(()) = inr(())

inr(y) = inl(y)

In Sect. 2.4 when we defined the operational semantics (cf. Fig. 6), the first
match policy was given in the case-of expression by checking that the closed term
of the evaluation of the second branch (inr(-)) could not be a possible leaf value
of the first branch (inl(-)). However, the above example includes an open term
that is defined over y.



Given the previous definition of PLVal(-) (Definition 1), this is actually easy
to extend. PLVal(+) has already been defined to take any term (both open and
closed terms). Thus, all we have to ensure is that all leaves of the second branch
do not have a possible value in the first branch.

We can also apply this the other way. Assuming that the programmer intends
for the function to be totally defined, we can also check if a function can fail the
first match policy. For example, the following program that collapses a sum term
is partially reversible when the intended domain does not include inr(inl()).

fax:14(141)=casex of
inl(()) = inr(inl()))
inr(y) = inr(y)

In this case the second leaf inr(inl())) will be a member of the possible
values of inr(y).

3.2 Inductive cases

The above analysis is specifically possible because we only investigate the domain
of the programs, but it also makes it very conservative. Parameters of a recursive
type require a more thorough analysis. Here we adhere to an inductive principle,
which we have to define clearly. We define a plus function to introduce the
subject:

succ n = roll [uX.1+ X] inr(n)

plus ng: X1+ X ny: pX.14+ X =
case unroll [uX.1+ X] ny of
inl() = (no, no)
inr(n') = let (ng, n}) = plus ng n’
in (ng, succ n})

As in the well-known structural or mathematical induction, we must identify
a base case for the induction hypothesis. A simple solution is to define these as
the branches in which a function call to the function which is being evaluated
does not occur. There might be multiple such branches without issue. Note that
this does not work well with mutually recursive functions. For plus there is only
one base case, and this is the left arm of the case-expression.

Analogously the inductive step is defined on each branch which contains a
recursive call. For each recursive call the induction hypothesis says that, granted
the arguments given to the recursive call, eventually one of the base cases will
be hit. This is because any instance of the recursive type can only be finitely
often folded, giving a guarantee of the finiteness of the decreasing chain. Though
there is a catch which should be addressed: inductive proofs are only valid for
strictly decreasing chains of elements to ensure that the recursion actually halts.
For example, for plus we need to make sure that n’ < ny. Should the chain not
be strictly decreasing, we have that the evaluation is non-terminating and the
function is not defined for this input.



To tie it all together we need to show that the recursive call in the right arm
of the plus function does indeed result in the base case in the left arm, allowing
us to use the induction hypothesis to conclude that ng = nj. If we are able to, we
may directly treat the return value of the recursive function call as an instance
of the value which the base case returns. We then continue evaluating the body
in the inductive step. For plus we say that:

... = let (ng, no) = plus ng n’
in (ng, succ ng)

And now we can see that the case-arms are provably disjoint, giving us a
static guarantee of the first match policy. However, implementing this is very
complex and sometimes requires human guidance. This has therefore been left
for future work.

4 Programming in CoreFun

Although CoreFun is a full r-Turing complete language, it lacks many of the
convenient features of most modern functional languages. Luckily, we can encode
many language constructs directly as syntactic transformations from a less
notationally heavy language to the formal core language.

The procedure entails that for each piece of syntactic abstraction we can show
that there is a systematic translation from the notationally light language to the
core language. This allows us to introduce a number of practical improvements
without the necessity to show their semantics formally past a translation scheme.

4.1 Variants

Variants are named alternatives; they generalize sum types and case-expressions.
A variant is of the form:
V= V1 | e | Vi

Constructing a variant value entails choosing exactly one of the possibilities
Vi,...,V, as a value. Then, given a variable of a variant type, we match over its
possible forms to unpack the value.

We have seen that we generalize binary sums to n-ary sums by repeated sum
types in the right component of 7, + 72, and that we can chain together case
expressions to match the correct arm of such a sum. We choose an encoding of
variants which exploits this pattern. This works because the variant constructors
are ordered and will match with the respective position in the n-ary sum. For a
variant which carries no data, the translation corresponds to stripping away the
variant names, leaving us with the underlying sum type of all unit types:

V=V1|-~-|Vn:>1—‘r~-~+l

We can further extend variants to carry data by adding parameters. We allow
generic type parameters by adding a type parameter to the variant declaration.



The syntax for variants becomes:
Va'=vy [ra]* |- | vy [ra]”

Where [ra]* signifies zero or more constructor parameters of some type
(including inner variants). If exactly one parameter p is present for a constructor
v; the type at position ¢ in the n-ary sum is changed from the unit type to the
type p.

Va=vi|veT|vsa=>14+7+a

Notice that we may generalizes any parameter-less variant constructor to one
with a single parameter of type unit, which we omit from the syntax.

If a variant constructor v; has m > 2 parameters p1,...,pm , the type in the
position of 7 in the n-ary sum is changed into a product type p1 X -+ X pm.

V=vwvi |- |vimecTm| =1+ Fm X XTp+...

There is one more common case we need to take into consideration: If any
of the variant constructors for a variant V have a self-referencing parameter (a
parameter of type V), the translated type of V is recursive and a fresh variable is
designated as the recursion parameter.

V=vy|vo V= puX 1+ X

The above actually corresponds to an encoding of the natural numbers.

When the variant declarations have been translated, the occurrences of each
variant type are substituted with the respective translation and expressions
of variant constructors are translated into a nested structure of Inr and Inl
depending on position of the variant constructor in the n-ary sum type.

A handy result to keep in mind is that if two variant definitions have the
same number of alternatives, they are isomorphic and may be encoded the same,
which simplifies the translation scheme.

The translation of a case expression dispatching over a variant type to
the underlying encoding transforms the overarching case into a chain of case-
expressions. Finally, the variant declarations may be removed.

Ezamples: The simplest encoding corresponds to the type Bool of Boolean values:
Bool = True |False = 1+1
The Maybe datatype is encoded as:
Maybe o = Nothing | Just a = 1+«

While the encoding for generic lists exemplify most of the translation rules
above simultaneously:

List « =Nil | Cons « (List o) = pX. 14+ A x X

As an example of a translation of a case-expression using variants, we construct

a variant for traffic lights where we leave irrelevant parts of the implementation
undefined:



Lights = Red | Yellow | Green

case e of
Red = c;
Yellow = co
Green = c3

Is rewritten as:

case e of
inl(()) = @
inr(e’) = case € of
inl(()) = co
inr(()) = c3

4.2 Type classes

Type classes in Haskell are aimed at solving overloading of operators by allowing
types to implement or infer a class. A class is a collection of function names with
accompanying type signatures, which are the functions to be inferred. We can
use type classes to implement equality for example:

class Eq a where
(==) =>a—>a—1+ Bool

instance Eq Nat where
(::) ng n1 () = eqInt ng ng ()

eqInt ng: Nat ny: Nat (): 1 = case unroll [Nat] ng of
inl() = case unroll [Nat| n; of

inl() = True

inr(n}) = False

inr(ny) = case unroll [Nat] n; of
inl() = False
inr(n}) = eqlnt n{ n} ()

Where Eq is the type class name and a is a type variable which is substituted
for a concrete type when the type class is instantiated. Notice the definition of
the equality class member needs to keep both ng and ny as ancillae values as we
cannot recover np from the resulting boolean value alone.

The translation must include stripping away all definitions and instantiations
of classes, and treat each class instantiations as top level function definitions.
An obvious method would be to create unique functions for each instance that
specialize for that instance type. Then any function f in which an overloaded
function call takes place needs to be changed so that the function for a specific
type is called instead. And since we need all functions to exist statically at run

time, we need to generate a new definition of f for each type the class function



is defined for in a cascading manner. Thus this translation is quite verbose, but
it works as a proof of concept. We will present an implementation of the two
presented ideas amongst others in future work.

5 Conclusion

Although CoreFun is a continuation of the work that was started with RFun, its
abstract syntax and evaluation semantics are quite different and include more
explicit primitive language constructs. However, we have also shown that CoreFun
can be made lighter via syntactic sugar to mimic other functional languages.

We have presented a formal type system for CoreFun, including support for
recursive types through a fix point operator and polymorphic types via parametric
polymorphism. The type system is built on relevance typing, which is sufficient
for reversibility if we accept that functions may be partial.

Evaluation has been presented through a big step semantics. Most evaluation
rules were straight forward, but it was necessary to define a notion of leaves and
a relation for “unification” as machinery to describe the side condition necessary
to capture the first match policy.

An advantage offered by the type system is the ability to check the first match
policy statically. A static guarantee that the first match policy should hold for a
function will eliminate the run time overhead of case-expressions, often leading
to more efficient evaluation. For simple types we can check for orthogonality of
inputs and the possible values of leaf expressions. For recursive types, we need to
apply an induction principle. However, it is difficult to detect exactly when this
will yield a first match policy guarantee.

Finally, we have argued that it is possible to enhance the syntax of CoreFun
with high level constructs, which in turn have simple translation schemes back to
the core language. We have presented three examples, including variants and type
classes, which, as an example, can be used to replace the duplication/equality
operator in the original RFun language.

Future work will use CoreFun as the foundation for a modern-style reversible
functional programming language. In contrast to many reversible programming
the syntax of CoreFun does not have support for reverse application of functions.
This is not problematic and the relational semantics does make it possible to
inverse interpret a program. Thus the future language should also support this.
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