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Abstract. We present Algeo, a functional logic programming language
based on the theory of infinite dimensional modules. Algeo is reversible in
the sense that every function has a generalised inverse, an adjoint, which
can be thought of as an inverse execution of the forward function. In
particular, when the given function is invertible, the adjoint is guaranteed
to coincide with the inverse.
Algeo generalises “ordinary” forward-backward deterministic reversible
programming by permitting relational and probabilistic features. This
allows functions to be defined in a multitude of ways, which we summarise
by the motto that “all definitions are extensional characterisations; all
extensional characterisations are definitions.”
We describe the syntax, type system, and the axiomatic semantics of
Algeo, and showcase novel features of the language through examples.

1 Introduction

Reversible programming languages have seen a great deal of research in recent
years thanks to their applications in surprisingly diverse areas such as debug-
ging [10, 15], robotics [19], discrete event simulation [18] and quantum comput-
ing [17, 9, 8]. For this reason, many different styles of reversible programming
have been explored, notably imperative [22], object-oriented [6], functional [21,
12, 16], and parallel [16, 10].

In this paper, we study reversibility in the context of functional logic pro-
gramming (see, e.g., [1]). As the name suggests, functional logic programming
incorporates aspects associated with both functional programming (e.g., pattern
matching, strong typing discipline) and logic programming (e.g., nondetermin-
ism, search), making it capable for tasks such as satisfiability modulo theories,
querying, and more. The combination of (very liberal) pattern matching with
search means that functions can be defined in an indirect way, which makes
certain functions expressible in particularly pleasant and succinct ways.

We present Algeo, a programming language based on the linear algebraic
theory of modules. Algeo extends the functional logic paradigm with a notion of
reversibility in the form of (Hermitian) adjoints, a kind of generalised inverse.
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path : 〈Atom〉 → 〈Atom⊗Atom〉 → Atom → Atom → 〈Atom〉

path v ∗ p p
...
= p on !v Start and end agree and are in the vertex set

path v e p q
...
= ( The general case

[r : Atom] [s : Atom] Introduce existential variables
r

...
= !v; Let r be a non-deterministically chosen vertex

p⊗ r
...
= !e; Check that there is an edge from p to r

s
...
= !p̂ath 〈!v on p⊥〉 e r q; Find a path recursively that does not contain p

(p ‖ s)) Return either p or the vertex found recursively

Fig. 1. Graph search in Algeo. A graph can be represented by a bag of vertices, v :
〈Atom〉, and a bag of edges, e : 〈Atom⊗Atom〉, and given a start vertex p : 〈Atom〉
and end vertex q : 〈Atom〉, path v e p q nondeterministically returns a vertex in a
path from p to q, further weighted by its number of occurences along any path from
p to q.

These adjoints exist not only for programs which are forward and backward de-
terministic, but also for arbitary linear maps, which may exhibit nondeterminis-
tic behaviours (e.g., relational, probabilistic). Crucially, however, when applied
to programs which are forward and backward deterministic, the adjoint is guar-
anteed to coincide with the inverse program.

A unique feature of Algeo is that a value comes equipped with a multiplicity.
This multiplicity can be taken from any ring, which in turn determines the
meaning of this multiplicity. For example, real multiplicities, when restricted
to those in the closed unit interval [0, 1], can represent probabilistic or fuzzy
membership. Integral multiplicities, when restricted to nonnegative numbers, can
represent multiset membership; negative multiplicities provide additive inverse
operations, e.g. deleting a row in a database table such that adding it again yields
the original table whether or not the row was present to start with. Multiplicities
can further be used to give a smooth account of negation in logic programming.
To properly account for these multiplicities, all functions in Algeo are linear
by definition in that they preserve multiplicities. However, since not all useful
functions are linear, a form of explicit nonlinearity is also supported, requiring
the explicit use of bags via bagging 〈−〉 and extraction !(−) operations. An
example of an Algeo program for searching for paths between given vertices in
a graph is shown in Figure 1.

Paper outline. Section 2 contains a brief tutorial of the language. We present
the syntax and type system of Algeo in Section 3, give it an axiomatic semantics
in the form of a system of equations, and illustrate its use through examples.
In Section 4, we detail some applications in the use of fixed points, and give an
encoding of polysets (i.e., sets with integral and possibly negative multiplicities)
in Algeo. We describe related work in Section 5, and end with some concluding
remarks and directions for future research in Section 6.



2 Algeo by Example
We now give an intuition for Algeo by writing some simple programs. In Algeo
Scalar and ⊕ play the role of unit type and sum type respectively. Take Bool
to be an alias for Scalar⊕ Scalar, and define:

true : Bool false : Bool

true
...
= inl(∗) false

...
= inr(∗)

Negation of booleans can be written using two clauses.

not : Bool → Bool

not true
...
= false

not false
...
= true

The adjoint of not is then given by:

not† : Bool → Bool

[x : Bool]not† (not x)
...
= x

This definition quantifies over x : Bool. Such a quantification represents a non-
deterministic choice of a base value. In Bool the base values are true and false
so the definition is equal to

not† (not true)
...
= true ‖ not† (not false) ...

= false

where ‖ represents binary nondeterministic choice. By the definition of not this
reduces to

not† false
...
= true ‖ not† true ...

= false

which is equivalent to having two clauses:

not† false
...
= true not† true

...
= false

We can thus establish that not† = not, as expected. Note the difference between
= and ...

=. The former is a relation between expressions and the latter behaves
as an operator with type τ → τ → Scalar. A definition of a name x is given by
an expression of type Scalar which may refer to x. There is no requirement to
use ...

=. In fact not could equivalently have been defined as:

istrue, isfalse : Bool → Scalar not : Bool → Bool

istrue true isfalse (not true)

isfalse false istrue (not false)

Next, we define conjunction and disjunction:

and,or : Bool → Bool → Bool

[x : Bool]and true x
...
= x

and false ∗ ...
= false

[x : Bool] [y : Bool]not (or x y)
...
= and (not x) (not y)



Let us take the adjoint of and with respect to the first argument:

and†
1 : Bool → Bool

[x : Bool]and†
1(and x ∗) ...

= x

Applying this function we get and†
1 true = true and and†

1 false = true ‖
false‖ false. When the first argument of and and its result are both false there
are two different possibilities for the value of the second argument, so false is
listed twice.

A nondeterministic choice between copies of the same value like false ‖ false
can also be written 2; false. We say that the multiplicity of false in this result
is 2. In general, multiplicities can also be negative so, e.g., −1; false represents
−1 occurences of false. This can be used to cancel out positive multiplicities.
For instance, we have false ‖ (−1; false) = ∅ (an empty result). Thus, negative
multiplicities allow another kind of reversal via cancellation. To see this in action,
consider the following alternative definition of conjunction:

and ∗ ∗ ...
= false Conjunction ‘usually’ returns false

and true true
...
= (−1; false) Not when both arguments are true, though

and true true
...
= true In that case the result should be in fact be true

Generally, functions defined in Algeo are linear in the sense that they respect
nondeterminism and multiplicities, corresponding to addition and scalar multi-
plication, respectively. Even before we know the definition of some function f we
can say that f (true ‖ false) = f true ‖ f false. Now suppose that the definition
is

f x
...
= and x (not x).

It is clear that f true = f false = false and therefore f (true‖ false) = 2; false.
Even though f uses its argument twice and the argument is a nondeterministic
choice between true and false the two uses of x are ‘entangled’ and have to
make the same nondeterministic choices.

For cases where this behaviour is undesirable Algeo supports bag types, writ-
ten 〈τ〉 and pronounced ‘bag of τ ’. Bags are formed by writing an expression in
angle brackets, e.g., 〈true ‖ false〉. The bag constructor is explicitly not linear,
so 〈true‖ false〉 6= 〈true〉 ‖ 〈false〉. The contents of a bag can be extracted with
the !(−) operator.

Consider a version of f using bags:

g : 〈Bool〉 → Bool

g x
...
= and !x (not !x)

We have g 〈true〉 = f true and similarly for false. However:
g 〈true ‖ false〉
= and (true ‖ false) (not (true ‖ false))
= and true (not true) ‖ and true (not false) ‖ and false (not true) ‖ and false (not false)

= false ‖ true ‖ false ‖ false = true ‖ 3; false



τ ::= Atom | Empty | Scalar | τ1 → τ2 | τ1 ⊕ τ2 | τ1 ⊗ τ2 | 〈τ〉
b ::= x | a | b1 b2 | b1; b2 | inl(b) | inr(b) | b1 ⊗ b2 | b1 7→ b2 | 〈e〉
d ::= x | a | d1 d2 | d1; d2 | inl(d) | inr(d) | d1 ⊗ d2 | d1 7→ d2 | 〈e〉 | ∅ | d1 on d2 | �e
e ::= x | a | e1 e2 | e1; e2 | inr(e) | inr(e) | e1 ⊗ e2 | e1 7→ e2 | 〈e〉 | ∅ | e1 on e2 | �e

n | e1 ‖ e2 | [x : τ ]e | !e

Fig. 2. Syntax of types and terms.

Essentially, the nondeterminism is postponed until !(−) is applied. For g this
means that the two uses of !x are not entangled and the result now has the
possibility of being true. Adjoints also exist when bags are involved, but can be
slightly more complicated. For instance, applying the adjoint of g to true we
get

[a : 〈Scalar〉] [b : 〈Scalar〉] !a; !b; 〈!a; true ‖ !b; false〉

which is the totality of all bags containing a copies of true and b copies of false
scaled by the product of their multiplicities.

3 Syntax and Semantics

The syntax of types and terms are given in Figure 2. Alternatives (‖) have
the lowest precedence. Aggregrations ([x : τ ] . . .) extend all the way to right. We
employ the following conventions: τ is a type, e is an expression, d is a duplicable
expression (see below for further details), b is a base value, a is an atom, n is a
number and x, y and z are variables. Any b is also a d, and any d is also an e.

Intuitively base values represent deterministic computations that yield a
value exactly once. Duplicable expressions are deterministic computations that
either produce a base value or fail. Expressions in general represent nondeter-
ministic computations that might produce any number of results. Variables are
thought of as ranging over base values, although we will sometimes carefully
substitute nonbase values.

We now describe the constructs of the language. An axiomatic semantics is
given in Section 3.2. Most operations, exceptions being � and 〈·〉, are linear in
the sense that they respect failure (∅), alternatives (‖) and conjunction (;). For
instance, on is linear in each component so in particular ∅ on e = ∅, (e1 ‖ e2) on
e3 = (e1 on e3)‖(e2 on e3) and (e1; e2) on e3 = e1; (e2 on e3). Hence, understanding
these operators reduces to understanding their actions on base values.

– ∅ is failure. It aborts the computation.
– e1; e2 is biased conjunction. The first component is evaluated to a base value,

which is discarded. The result of the biased conjunction is then the second
component.



– e1 on e2 is join. It computes the intersection of the two arguments. In par-
ticular, the intersection of two base values is their unique value when equal
and failure otherwise.

– e1 ⊗ e2 is a pair.
– e1 7→ e2 is a mapping. It is a function that maps every base value in e1 to

every base value in e2.
– inl(e) and inr(e) are left and right injections for the ⊕ type.
– 〈τ〉 is the type of bags of τ .
– 〈e〉 is a bag. It collects all the results from e into a single bag. The bag itself

is considered a base value.
– �e is an indicator. It yields 0 if e = ∅, otherwise 1. Thus, � is explicitly

nonlinear.
– e1 ‖ e2 is alternative. It represents a nondeterministic choice between e1 and

e2.
– [x : τ ]e is aggregation. It represents a nondeterministic choice of a base value

b : τ which is substituted for x in e.
– !e is extraction. It extracts the contents of a bag.
– n is a number. It represents a computation that succeeds n times. Note that

negative values of n are possible. In general, depending on the choice of ring,
n can also be rational or even complex.

We will also need the following syntactic sugar:

e1
...
= e2 = e1 on e2; 1 Pointwise unification of e1 and e2

e1 \\ e2 = e1 ‖ −1; e2 Collect the results of e1 but subtract the results from e2

∗τ = [x : τ ]x Wildcard, acts as the unit for on

e⊥ = ∗ \\ e Everything except e

e1 ⊕ e2 = inl(e1) ‖ inr(e2) A sum of lefts and rights

Beware: some constructs, e.g. ...
=, use unfamiliar notation. This is done delib-

erately to show that these constructs represent new and unfamiliar concepts. A
good rule of thumb is that the familiar-looking syntax like inl(e) means roughly
what one would expect, whereas the unfamiliar syntax like ...

= has no simple
well-known analogue.

In most languages the notion of function embodies both the introduction
of variables and the mapping of those variables to some result. In Algeo, by
contrast, these are separate concerns. Variable introduction is handled by [x : τ ]
whereas mappings are constructed by expressions of the form e1 7→ e2. This
separation of concerns is the vital ingredient that makes Algeo so powerful.

Finally, we need to explain how (possibly recursive) top-level definitions are
encoded as expressions. Suppose we define x : τ by the clauses e1, . . . , en, each
of them typeable as x : τ, x̂ : 〈τ〉 ` ei : Scalar. Intuitively, x refers to (a single
component of) the object we are defining and x̂ refers to the completed definition.
The completed definition is used for recursive invocations. Note that x̂ is just a
name with no a priori relation to x.



id : τ → τ
id x

...
= x

(◦) : (τ1 → τ2) → (τ2 → τ3) → (τ1 → τ3)
(f ◦ g) x ...

= f (g x)

(−†) : (τ1 → τ2) → τ2 → τ1
f† ◦ f ...

= id

linv : 〈τ1 → τ2〉 → 〈τ2 → τ1〉
〈!(linv f) ◦ !f〉 ...

= 〈id〉

rinv : 〈τ1 → τ2〉 → 〈τ2 → τ1〉
〈!f ◦ !(rinv f)〉 ...

= 〈id〉

inv : 〈τ1 → τ2〉 → 〈τ2 → τ1〉
inv f

...
= linv f on rinv f

Fig. 3. Some basic functions in Algeo: identity, composition, adjoints, and (left and
right) inverses. Note the use of bags 〈−〉 to contain nonlinearity.

Given such a top-level definition and a program e that can refer to x the
desugared version is:

[x̂ : 〈τ〉] x̂ ...
= 〈[x : τ ] (e1 ‖ · · · ‖ en);x〉; ex:=!x̂

The notation ex:=!x̂ means e with !x̂ substituted for x. This construction works
by summing over all basis elements of τ subject to the conditions imposed by
e1 ‖ · · · ‖ en. The sum is collected into the bag x̂, which represents the totality
of the object we are defining. Each use of x in the program is replaced with !x̂
so each copy is independent. This scheme generalises to mutual recursion. Note
that ...

= is not mentioned and has no special status in this regard; it is merely
an operator which happens to be useful for imposing suitable constraints when
giving definitions.

Figure 3 shows some basic and fundamental functions. While identity and
composition are similar to their definition in any functional language, the def-
inition of adjoint (−†) seems very strange from a functional perspective and
further seems to imply that all functions are injective—which isn’t so! The trick
to understanding this definition is that f quantifies over base values of the form
b1 7→ b2 (and not entire functions), while id masquerades over the sum of all
base values of the form b 7→ b. In this way, we could just as well define (·†) as
(x 7→ y)† ◦ (x 7→ y)

...
= (x 7→ x) or even the more familiar (x 7→ y)†

...
= (y 7→ x).

The use of search and indirect definition is perhaps more powerfully illus-
trated by linv (and, symmetrically, rinv) which says that a left inverse to a
function f is anything that behaves like it; in other words, any function that,
after composition with !f (needed here since f is used more than once), yields
the identity (and symmetrically for rinv). Even further, inv states that a full
inverse to f is anything that behaves both as a left inverse and as a right inverse,
using the join operator to intersect the left inverses with the right inverses.

A function f is unitary if the adjoint is also a two-sided inverse module
bagging, i.e. if 〈f†〉 = inv 〈f〉. The unitaries include include many interesting
examples, including all classically reversible functions as well as all quantum
circuits. In these cases we prefer the adjoint, since it does not require the use of
bags and is generally easier to work with.



Γ ` e : τ

Γ ` n : Scalar Γ ` a : Atom Γ, x : τ, Γ ′ ` x : τ Γ ` ∅ : τ

Γ ` e1 : τ Γ ` e2 : τ

Γ ` e1 ‖ e2 : τ

Γ ` e : τ1
Γ ` inl(e) : τ1 ⊕ τ2

Γ ` e : τ2
Γ ` inr(e) : τ1 ⊕ τ2

Γ ` e1 : τ1 Γ ` e2 : τ2
Γ ` e1 ⊗ e2 : τ1 ⊗ τ2

Γ ` e1 : τ1 Γ ` e2 : τ2
Γ ` e1 7→ e2 : τ1 → τ2

Γ ` e1 : τ ′ Γ ` e2 : τ

Γ ` e1; e2 : τ

Γ ` e1 : τ ′ → τ Γ ` e2 : τ ′

Γ ` e1 e2 : τ

Γ, x : τ ′ ` e : τ

Γ ` [x : τ ′]e : τ

Γ ` e : τ

Γ ` �e : Scalar

Γ ` e : τ

Γ ` 〈e〉 : 〈τ〉
Γ ` e : 〈τ〉
Γ ` !e : τ

Fig. 4. The type system of Algeo.

3.1 Type System

The type system is seen in Figure 4 and consists of a single judgement Γ ` e : τ
stating that in type environment Γ the expression e has type τ . These rules
should not be surprising, at least for a classical programming language. However,
Algeo functions represent linear maps, so why does the type system not track
variable use? The reason is that duplication and deletion are relatively harmless
operations. Duplicating a value by using a variable multiple times creates ‘entan-
gled’ copies. They still refer to the same bound variables so any nondeterministic
choice is made globally for all copies. Unused variables will still be bound in an
aggregration and ultimately the multiplicity of the result will be scaled by the
dimension of the type. Thus, such variables are not simply forgotten.

3.2 Axiomatic Semantics

We now present the semantics of Algeo as a set of equations between expressions,
see Figure 5. Equations hold only when well-typed and well-scoped. For instance,
∅ = 0 implicitly assumes that the ∅ in question is typed as Scalar. The semantics
is parametric over the choice of numbers, provided that the numbers form a ring
of characteristic 0 (i.e. are the integers or an extension of them) and that for
any type τ there is a number dim(τ) such that:

dim(τ1 ⊕ τ2) = dim(τ1) + dim(τ2) dim(Empty) = 0

dim(τ1 ⊗ τ2) = dim(τ1) · dim(τ2) dim(Scalar) = 1

dim(τ1 → τ2) = dim(τ1) · dim(τ2)

As the ‘standard model’ we propose Z[ω], i.e. polynomials over the integers in one
variable ω. We define dim(Atom) = dim(〈τ〉) = ω together with the equations
above.



Biased conjunction
1; e = e
x; e = e
〈e1〉; e2 = e2
inl(e1); e2 = e1; e2
inr(e1); e2 = e1; e2
e1 ⊗ e2; e3 = e1; e2; e3
e1 7→ e2; e3 = e1; e2; e3

Function application
(e1 7→ e2) e

′ = e1 on e′; e2

Numbers
∅ = 0
m ‖ n = m+ n
m;n = m · n
[x : τ ]1 = dim(τ)

Aggregation
[x : Empty]e = ∅
[x : Scalar]e = ex:=1

[x : τ1 ⊕ τ2]e = ([y : τ1]e
x:=inl(y)) ‖

([y : τ2]e
x:=inr(y))

[x : τ1 ⊗ τ2]e = [x1 : τ1] [x2 : τ2]e
x:=x1⊗x2

[x : τ1 → τ2]e = [x1 : τ1] [x2 : τ2]e
x:=x1 7→x2

[x : τ ]x on e;x = e
[x : τ ]e = ex:=d \\ ex:=∅ ‖ [y : τ ]ex:=y\\y⋊⋉d

Extraction
!〈e〉 = e
〈!x〉 = x

Join
d on d = d
inl(e) on inl(e′) = inl(e on e′)
inr(e) on inr(e′) = inl(e on e′)
inl(e) on inr(e′) = ∅
inr(e) on inl(e′) = ∅
(e1 ⊗ e2) on (e′1 ⊗ e′2) =

(e1 on e′1)⊗ (e2 on e′2)
(e1 7→ e2) on (e′1 7→ e′2) =

(e1 on e′1) 7→ (e2 on e′2)
〈e1〉 on 〈e2〉 = (�(e1 \\ e2))⊥; 〈e1〉

Possibility
�∅ = 0
�(e1 ‖ e2) = �e1 ‖ �e2 \\ �e1; �e2

when e1 on e2 = ∅
�(e1; e2) = �e1; �e2
�x = 1
�a = 1
�n = 1 when n 6= ∅
�〈e〉 = 1
�inl(e) = �e
�inr(e) = �e
�(e1 ⊗ e2) = �e1; �e2
�(e1 7→ e2) = �e1; �e2
�(�e) = �e

Linearity
([x : τ ]−), (!−),
inl(−) and inr(−) are linear
(−;−), (−−), (− on −),
(−⊗−) and (− 7→ −) are bilinear

Fig. 5. Axiomatic semantics of Algeo.

Most operations are defined to be either linear or bilinear (with the notable
exceptions of � and 〈−〉). For an operation o this entails:

o(∅) = ∅ o([x : τ ]e) = [x : τ ]o(e)

o(e1; e2) = e1; o(e2) o(e1 ‖ e2) = o(e1) ‖ o(e2)

A binary operator (−�−) is bilinear if both (e1 �−) and (−� e2) are linear.

3.3 Justification of the Semantics

All axioms are based on intuition from finite-dimensional types, i.e. types whose
set of base values is finite. The idea is to extend this to infinite-dimensional types,
but with a flavour of ‘compactness’ keeping the properties of finite-dimensionality.



While it is possible to aggregate over infinite types, any given expression will
only mention a finite number of distinct base values. We avoid contradiction aris-
ing from this approach by not insisting that every aggregation be reducible. For
example, [x : 〈Scalar〉] !x has type Scalar but cannot be shown to be equal to
any expression of the form n; indeed, we cannot even establish whether it is zero
or nonzero. This reveals a possible connection between Algeo and nonstandard
analysis.

Most axioms should be uncontroversial, but some deserve elaboration. Per-
haps the most unusual one is [x : τ ]e = ex:=d \\ ex:=∅ ‖ [y : τ ]ex:=y\\y⋊⋉d.
Usually we will exploit the equality y \\ y on d = y on d⊥ to get the rule
[x : τ ]e = ex:=d \\ ex:=∅ ‖ [y : τ ]ex:=y⋊⋉d⊥ . Firstly, note that d is only used
in the substitutions, so some amount of prescience is required to choose a suit-
able d. The intuition is that we are splitting into cases depending on whether x
is equal to d or not. To see how this works in the finite-dimensional case suppose
τ = Scalar ⊕ · · · ⊕ Scalar (n copies). Then τ has n distinct base values which
we shall refer to as b1, . . . , bn. The following reasoning shows how the statement
can be shown directly from the other axioms in the finite case. A d of type τ
will either be some bi or ∅. Without loss of generality let d = b1 (if d = ∅ the
statement is trivial). We then have:

[x : τ ]e = ex:=b1 ‖ ex:=b2 ‖ . . . ‖ ex:=bn

= ex:=b1 \\ ex:=∅ ‖ ex:=∅ ‖ ex:=b2 ‖ . . . ‖ ex:=bn

= ex:=b1 \\ ex:=∅ ‖ ex:=b1⋊⋉b1
⊥
‖ ex:=b2⋊⋉b1

⊥
‖ . . . ‖ ex:=bn⋊⋉b1

⊥

= ex:=b1 \\ ex:=∅ ‖ [y : τ ]ex:=y⋊⋉b1
⊥

The possibility operator �e also deserves elaboration. The intuitive descrip-
tion (evaluate e and return 1 if it is not ∅) sounds similar to negation by failure
(evaluate e and return 1 if it is ∅). However, �e is not defined operationally. It
has rules for each data constructor as well as ∅, ‖ and (; ), but it does not by
itself make progress on e. For example, a subexpression like �(x ...

= y) does not
simply succeed with a ‘unification’ of x and y. Rather, the case-split rule (dis-
cussed above) should be applied where either x or y is bound, making a global
nondeterministic choice on whether x and y are equal.

The combination (�e)⊥ expresses the Algeo version of negation by failure.
Compared to the usual notion in logic programming it is pure and not dependent
on the evaluation strategy.

Finally, we mention 〈e1〉 on 〈e2〉 = (�(e1 \\ e2))⊥; 〈e1〉 which describes how
to resolve joins of bags. When comparing bags 〈e1〉 and 〈e2〉 we have to decide
whether e1 and e2 are equal as Algeo expressions. That is the case precisely
when e1 \\ e2 = ∅. If e1 = e2 then (�(e1 \\ e2))⊥ = 1 and the whole right-hand
side reduces to 〈e1〉 as expected. If e1 6= e2 then the condition fails and the
right-hand side reduces to ∅, again as expected.

This rule is the sole reason why � has to be in the language. The possibility
operator could otherwise simply be defined as �e = (〈e〉 ...

= 〈∅〉)⊥, but then the
rule for bag joins would not actually make any progress.



3.4 Derived Equations and Evaluation

The semantic equations in Figure 5 are not reduction rules, although most of
them embody some kind of reduction when read from left to right. They can be
used for evaluation as well as deriving new equations.

As an example of a derived equation consider [x : τ ]x on b; e = ex:=b. This
property states that if a variable is unconditionally subject to a join constraint
with a base value, we may dispense with the variable and simply substitute that
value. The main idea is to case-split on whether or not x equals b. The last line
exploits that all base values are left identities for (; ).

[x : τ ]x on b; e = (x on b; e)
x:=b \\ (x on b; e)

x:=∅ ‖ [y : τ ] (x on b; e)
x:=y⋊⋉b⊥

= b on b; ex:=b \\ ∅ on b; ex:=b ‖ [y : τ ]y on b⊥ on b; ex:=b

= b; ex:=b \\ ∅ ‖ [y : τ ]∅ = b; ex:=b = ex:=b

A generalisation of this lemma suggests that, in the absence of bags, we can em-
ulate the usual operational interpretation of logic programming where variables
are instantiated based on unification constraints.

As an example of evaluation consider the problem of calculating how many
pairs of atoms are equal and how many are unequal. Equality of x of y can be
reified by putting it in a bag, i.e. 〈x ...

= y〉. The question can then be answered
as follows, assuming the standard model where dim(Atom) = ω.

[x : Atom] [y : Atom]〈x ...
= y〉

= [x : Atom]〈x ...
= y〉y:=x \\ 〈x ...

= y〉y:=∅ ‖ ([z : Atom]〈x ...
= y〉y:=z⋊⋉x⊥

)

= [x : Atom]〈x ...
= x〉 \\ 〈x ...

= ∅〉 ‖ ([z : Atom]〈x ...
= z on x⊥〉)

= [x : Atom]〈1〉 \\ 〈0〉 ‖ ([z : Atom]〈0〉)
= [x : Atom]〈1〉 \\ 〈0〉 ‖ dim(Atom); 〈0〉
= ([x : Atom]〈1〉) \\ ([x : Atom]〈0〉) ‖ ([x : Atom]dim(Atom); 〈0〉)
= dim(Atom); 〈1〉 \\ dim(Atom); 〈0〉 ‖ dim(Atom) · dim(Atom); 〈0〉
= ω; 〈1〉 ‖ ω2 − ω; 〈0〉

Thus, we see that there are ω pairs of equal atoms and ω2 − ω unequal pairs.
This corresponds well with the size of the diagonal and off-diagonal respectively
of a hypothetical ω × ω matrix.

3.5 Relation to Linear Algebra

0 ∅
x+ y x ‖ y
n · x n;x
1 ∗
x · y x on y
〈x | y〉 x

...
= y

Fig. 6. Linear alge-
bra versus Algeo

Many operations in Algeo are closely related to linear al-
gebra, in particular K-algebras where K is the ring of
elements of type Scalar. The correspondence can be seen
in Figure 6. Recall the common definition of the adjoint
of f as the unique function f† satisfying 〈f(x) | y〉 = 〈x |
f†(y)〉 for all x and y. Translating this to Algeo we might



write it as [x] [y] (f x
...
= y)

...
= (x

...
= f† y), which turns out

to be a perfectly good definition that is equivalent to our
previous one. This gives a new perspective on what the
inner product means in linear algebra.

4 Applications

Pattern matching. The flexibility of Algeo definitions allows us to define func-
tions in many ways. This clearly includes definition by cases using ordinary pat-
tern matching, but further exploration reveals that many extensions of pattern
matching can be encoded as well. Note that in Algeo a ‘pattern’ is nothing more
than an expression written on the left-hand side of ...

=. Simple examples include
∗ functioning as a wildcard, and definitions in general functioning as pattern
synonyms. We list a number of common pattern matching features below along
with their representation in Algeo.

– Functional patterns. These are written just like in Curry. For example, sup-
pose f is defined by f (g x)

...
= e. When f is applied to some e′, effectively g

will be run in reverse on e′ and x bound to each result.
– View patterns. There is a Haskell extension providing patterns of the form

(f ⇒ p), which matches a value v if p matches f v. This syntax is definable
as a function in Algeo:

(⇒) : (τ → τ ′) → τ ′ → τ

f ⇒ p
...
= (f v

...
= p;v)

This is effectively a functional pattern where the function is run in reverse.
– Guard patterns. Some functional languages allow pattern guards like f p | c

where the interpretation is that p is matched and then the boolean condition
c is checked. Algeo, like any other logic language, can of course include con-
ditions (i.e. expressions of type Scalar) in the body of a function. However,
the flexibility of definitions means that we can write f (c; p) to signify that
we consider the condition c to be part of the pattern.

– Alias patterns. Many functional languages support patterns like x as p where
x is bound to the value matched by the entire pattern p. In Algeo the on
operator furnishes a much more general version of this. A pattern like e1 on e2
matches e1 and e2 simultaneously. When e1 is a variable this encodes an alias
pattern.

– Alternative patterns. Some languages allow patterns like (p1 | p2) where p1
and p2 are nullary constructors. This is interpreted as equivalent to writing
two clauses, one with p1 and one with p2. In Algeo any two patterns can be
combined using ‖. By linearity f (e1 ‖ e2)

...
= e means exactly the same as

f e1
...
= e ‖ f e2

...
= e.

– Negative patterns. Generally pattern matching is positive in the sense that
patterns describe the shape of the data that we want to match. Matching
everything except for some given pattern is typically done with a final default



case; this works in functional languages where patterns are ordered and
pattern matching works by finding the first match only. Algeo can describe
negative patterns directly. Recall that e⊥ = ∗ \\ e for any expression e.
As a pattern this can be interpreted as ‘everything except e’. For example,
deciding equality between two values can be defined as follows:

eq? : τ → τ → Scalar⊕ Scalar

eq? x x
...
= inl(1)

eq? x x⊥ ...
= inr(1)

Linear algebra Given that Algeo is built on linear algebra, it will likely come as no
surprise that expressing problems from linear algebra is often straightforward.
An example of this is matrix multiplication. Given an m × n matrix A with
entries aij , and a n× p matrix B with entries bij , the entries in the n× p matrix
C = AB are given by cij =

∑n
k=1 aikbkj , i.e., summing over all possible ways of

going first via A and then via B. In Algeo, a matrix from τ1 to τ2 is a value of
type τ1 ⊗ τ2 (i.e., a weighted sum of pairs of base values of τ1 and τ2), and their
multiplication is expressed as

(·) : τ1 ⊗ τ2 → τ2 ⊗ τ3 → τ1 ⊗ τ3

(x⊗ y) · (y ⊗ z)
...
= x⊗ z

where the implicit aggregation over y corresponds to the summation over k in the
definition of cij from before. Another example is the trace (or sum of diagonal
elements) of a square n × n matrix, tr(A) =

∑
n=1 ann, which can be slightly

cryptically defined without a right hand side:

tr : (τ ⊗ τ) → Scalar

tr (x⊗ x)

Again, note how the implicit aggregation over x corresponds to summation in
the definition from linear algebra.

A much more involved example is (unnormalised) operator diagonalisation,
i.e., the representation of an operator F as a composition F = U−1 ◦ D ◦ U ,
where U is an isomorphism, and D is diagonal. We specify this by describing
the constraints: U must be an isomorphism, so U−1 ◦U = id and U ◦U−1 = id;
D must be diagonal, meaning that joining it with the identity should have no
effect; and the composition of U−1 ◦D ◦U should be F . In Algeo, this becomes

diagonalise : 〈τ → τ〉 → 〈τ → τ〉 ⊗ 〈τ → τ〉 ⊗ 〈τ → τ〉
diagonalise f

...
= u⊗ d⊗ v;

〈!u ◦ !v〉 ...
= 〈id〉;

〈!v ◦ !u〉 ...
= 〈id〉;

〈!d on id〉 ...
= d;

〈!u ◦ !d ◦ !v〉 ...
= f



Notice that this is only slightly different than usual diagonalisation, in that
this will find diagonalisations for eigenvectors scaled arbitrarily, rather than (as
usual) only of length 1.

Polysets and polylogic. Polysets [7] are a generalisation of multisets which also
permit elements to occur a negative number of times. This is useful for represent-
ing, e.g., (possibly unsynchronised) database states, with elements with positive
multiplicity representing (pending) data insertions, and elements with negative
multiplicity representing (pending) data deletions.

Polysets can be represented in Algeo via polylogic, an account of proposi-
tional logic relying on multiplicities of evidence and counterexamples (similar to
decisions as in [14]). Concretely, a truth value in polylogic consists of an amount
of evidence (injected to the left) and an amount of counterexamples (injected
to the right). For example, ⊥ has no evidence and a single counterexample, and
dually for >, as in

⊥,> : Scalar⊕ Scalar

⊥ = ∅ ⊕ ∗
> = ∗ ⊕ ∅

As in [14], negation swaps evidence for counterexamples and vice versa, while
the evidence of a conjunction is the join of the evidence of its conjuncts, with
everything else counterexamples (disjunction dually):

¬(e⊕ e′) = e′ ⊕ e

(e1 ⊕ e′1) ∧ (e2 ⊕ e′2) = (e1 on e2)⊕ (e1 on e′2 ‖ e′1 on e2 ‖ e′1 on e′2)

(e1 ⊕ e′1) ∨ (e2 ⊕ e′2) = (e1 on e2 ‖ e1 on e′2 ‖ e′1 on e2)⊕ (e′1 on e′2)

A polyset over τ is represented by the type τ ⊕ τ , with all the above definitions
generalising directly. That is, a value of this type is an aggregation of evidence
(with multiplicity) either for or against each base value of τ . In this way, we can
interpret a finite set {d1, . . . , dk} by the expression (d1⊕d1

⊥)∨ · · · ∨ (dk ⊕dk
⊥).

Note that in this calculus ∨ and ∧ form a lattice-esque structure as opposed to
‖ and on, which form a ring structure.

5 Related Work

Algebraic λ-calculi. A related approach to computing with linear algebra is the
idea of extending the λ-calculus with linear combinations of terms [?,?], though
such approaches do not provide generalised reversibility in the form of adjoints.
Extending the λ-calculus in this way is a delicate ordeal that easily leads to
collapse (e.g. 0 = 1) from interactions between sums and fixpoints. Algeo evades
these problems by taking a different view of functions, namely that base elements
of type τ1 → τ2 are b1 7→ b2 where b1 and b2 are base elements, and function
application is linear in both arguments (this approach was briefly considered in
[?] and discarded due to wanting a strict extension of untyped λ-calculus).



It is possible in Algeo to define an abstraction λx.e as syntactic sugar for
[x̂ : 〈τ1〉] x̂ 7→ ex:=!x̂ of type 〈τ1〉 → τ2. The input must be a bag type to
model the nonlinearity of function application in algebraic λ-calculi. However,
the fixpoint-esque operators definable in Algeo have different semantics than in
standard λ-calculus and do not allow the kind of infinite unfolding that so easily
leads to paradoxes. The simplest such operator is fix : (τ → τ) → τ defined by
fix (x 7→ x)

...
= x, which is just a repackaged version of on. To get something

approaching the usual concept of fixpoint we again need bags:

fix : 〈τ → τ〉 → τ fix f
...
= !f (!fîx f)

Even ignoring the bag operations fix is not a fixpoint combinator in the λ-
calculus sense since fix e = !e (!fîx e) does not hold in general when e is a not
a base value. We can try to create a paradox by considering e.g. e = fix 〈[x :
τ ]x 7→ −1;x〉. It is indeed the case that e = (−1; e) and therefore that e = 0, but
this only emphasises what we already know: that Algeo is powerful enough to
express arbitrary constraints and that recognising 0 is uncomputable in general.

Reversible and functional logic programming. The functional logic paradigm of
programming was pioneered by languages such as Curry [1, 5] and Mercury [20].
Along with reversible functional programming languages such as Rfun [21], Core-
Fun [11], and Theseus [13], they have served as inspiration for the design of
Algeo. Unlike Algeo, neither of the conventional functional logic programming
languages come with an explicit notion of multiplicity and the added benefits
in expressing data of a probabilistic, fractional, or an “inverse” nature, nor do
they have adjoints. On the other hand, while the reversible functional languages
all have a notion of inversion, their execution models and notions of reversibility
differ significantly from those found in Algeo.

Modules, databases, and query languages. Free modules can be seen as a form
of generalised multisets. When permitting negative multiplicities, this allows the
representation of database table schemas as (certain) free modules, tables as vec-
tors of these free module, and linear maps as operations (e.g., insertion, deletion,
search, aggregation, joins, and much more) acting on these tables. The struc-
tural theory of modules that led to the development of Algeo, and its relation
to database representation and querying, is described in [7].

Abstract Stone duality. Abstract Stone duality (see, e.g., [2]) is a synthetic ap-
proach to topology and analysis inspired by Stone’s famous duality theorem
between categories of certain topological spaces and certain order structures. An
interesting feature of abstract Stone duality is that it permits the indirect defini-
tion of numbers from a description (i.e., a predicate) via a method known simply
as definition by description, provided that it can be shown that a description is
true for exactly one number. This is not unlike the indirect description of terms
in Algeo, though instead of requiring descriptions to be unique, the result of an
indirect description in Algeo is instead the aggregation over all terms satisfying
this description.



6 Conclusion and Future Work

We have presented the reversible functional logic programming language Algeo,
described its syntax and type system, and given it semantics in the form of a
system of equations. We have illustrated the use of Algeo through applications
and examples, and described applications in areas such as database querying
and logic programming with an improved notion of negation.

As regards avenues for future research, we consider developing an implemen-
tation based on this work to be a logical next step. However, this is not as trivial
as it may appear at first glance, as it requires the development of strategies for
performing nontrivial rewriting using the equational theory. In particular, we
don’t believe that there is an obvious optimal evaluation strategy for Algeo, as
it would have to optimally solve all expressible problems (e.g., matrix diagonal-
isation, three-way joins).

An extension to Algeo not considered here is that of dual types, reflecting
the notion of dual modules and vector spaces in linear algebra. To include these
would permit Algeo to use multiplicities in the complex numbers, in turn paving
the way for using Algeo to express quantum algorithms.

We would also find it interesting to use Algeo to study polylogic (as described
in Section 4), in particular its use as a reasonable semantics for negation not
involving the impure and unsatisfying negation-as-failure known from Prolog.
Finally, since Algeo permits aggregating over infinite collections of values, it
seems that there is at least some connection to nonstandard analysis and linear
algebra (see also [4]) which could be interesting to elaborate. In fact, permit-
ting the use of nonstandard real (or complex) numbers as multiplicities would
allow automatic differentiation (see [3] for a recent, combinatory approach to
automatic differentiation on Hilbert spaces) to be specified in an exceedingly
compact manner, which could lead to further applications in machine learning
and optimization.

References

1. Antoy, S., Hanus, M.: Functional logic programming. Communications of the ACM
53(4), 74–85 (2010)

2. Bauer, A., Taylor, P.: The Dedekind reals in abstract Stone duality. Mathematical
Structures in Computer Science 19(4), 757–838 (2009)

3. Elsman, M., Henglein, F., Kaarsgaard, R., Mathiesen, M.K., Schenck, R.: Combi-
natory adjoints and differentiation (2022), accepted for Ninth Workshop on Math-
ematically Structured Functional Programming (MSFP 2022), to appear

4. Gogioso, S., Genovese, F.: Infinite-dimensional categorical quantum mechanics.
In: Duncan, R., Heunen, C. (eds.) Proceedings 13th International Conference on
Quantum Physics and Logic (QPL 2016). Electronic Proceedings in Theoretical
Computer Science, vol. 236. OSA (2016)

5. Hanus, M.: Functional logic programming: From theory to Curry. In: Voronkov,
A., Weidenbach, C. (eds.) Programming Logics: Essays in Memory of Harald
Ganzinger. pp. 123–168. Springer (2013)



6. Hay-Schmidt, L., Glück, R., Cservenka, M.H., Haulund, T.: Towards a unified
language architecture for reversible object-oriented programming. In: International
Conference on Reversible Computation (RC 2021). pp. 96–106. Springer (2021)

7. Henglein, F., Kaarsgaard, R., Mathiesen, M.K.: The programming of algebra
(2022), accepted for Ninth Workshop on Mathematically Structured Functional
Programming (MSFP 2022), to appear

8. Heunen, C., Kaarsgaard, R.: Bennett and Stinespring, together at last. In: Proceed-
ings 18th International Conference on Quantum Physics and Logic (QPL 2021).
Electronic Proceedings in Theoretical Computer Science, vol. 343, pp. 102–118.
OPA (2021)

9. Heunen, C., Kaarsgaard, R.: Quantum information effects. Proceedings of the ACM
on Programming Languages 6(POPL) (2022)

10. Hoey, J., Ulidowski, I.: Reversible imperative parallel programs and debugging. In:
Thomsen, M.K., Soeken, M. (eds.) Reversible Computation. pp. 108–127. Springer
(2019)

11. Jacobsen, P.A.H., Kaarsgaard, R., Thomsen, M.K.: CoreFun: A typed functional
reversible core language. In: Kari, J., Ulidowski, I. (eds.) Reversible Computation
(RC 2018). pp. 304–321. Springer (2018)

12. James, R.P., Sabry, A.: Information effects. ACM SIGPLAN Notices 47(1), 73–84
(2012)

13. James, R.P., Sabry, A.: Theseus: A high level language for reversible computing
(2014), https://www.cs.indiana.edu/~sabry/papers/theseus.pdf, work-in-progress
report

14. Kaarsgaard, R.: Condition/decision duality and the internal logic of extensive re-
striction categories. In: Proceedings of the Thirty-Fifth Conference on the Mathe-
matical Foundations of Programming Semantics (MFPS XXXV). Electronic Notes
in Theoretical Computer Science, vol. 347, pp. 179–202. Elsevier (2019)

15. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: CauDEr: A causal-consistent re-
versible debugger for Erlang. In: International Symposium on Functional and Logic
Programming (FLOPS 2018). pp. 247–263. Springer (2018)

16. Nishida, N., Palacios, A., Vidal, G.: A reversible semantics for Erlang. In:
Hermenegildo, M.V., Lopez-Garcia, P. (eds.) Logic-Based Program Synthesis and
Transformation (LOPSTR 2016). pp. 259–274. Springer (2017)

17. Sabry, A., Valiron, B., Vizzotto, J.K.: From symmetric pattern-matching to quan-
tum control. In: International Conference on Foundations of Software Science and
Computation Structures (FOSSACS 2018). pp. 348–364. Springer (2018)

18. Schordan, M., Jefferson, D., Barnes, P., Oppelstrup, T., Quinlan, D.: Reverse code
generation for parallel discrete event simulation. In: Krivine, J., Stefani, J.B. (eds.)
RC 2015. Lecture Notes in Computer Science, vol. 9138, pp. 95–110. Springer
(2015)

19. Schultz, U.P., Laursen, J.S., Ellekilde, L., Axelsen, H.B.: Towards a domain-specific
language for reversible assembly sequences. In: Krivine, J., Stefani, J.B. (eds.) RC
2015. Lecture Notes in Computer Science, vol. 9138, pp. 111–126. Springer (2015)

20. Somogyi, Z., Henderson, F., Conway, T.: The execution algorithm of Mercury,
an efficient purely declarative logic programming language. The Journal of Logic
Programming 29(1), 17–64 (1996)

21. Yokoyama, T., Axelsen, H.B., Glück, R.: Towards a reversible functional language.
In: De Vos, A., Wille, R. (eds.) Reversible Computation. pp. 14–29. Springer (2012)

22. Yokoyama, T., Glück, R.: A reversible programming language and its invertible
self-interpreter. In: Partial Evaluation and Program Manipulation. Proceedings.
pp. 144–153. ACM (2007)


