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Abstract. Reversible computing is motivated by both pragmatic and
foundational considerations arising from a variety of disciplines. We take
a particular path through the development of reversible computation,
emphasizing compositional reversible computation. We start from a his-
torical perspective, by reviewing those approaches that developed re-
versible extensions of A-calculi, Turing machines, and communicating
process calculi. These approaches share a common challenge: computa-
tions made reversible in this way do not naturally compose locally.

‘We then turn our attention to computational models that eschew the de-
tour via existing irreversible models. Building on an original analysis by
Landauer, the insights of Bennett, Fredkin, and Toffoli introduced a fresh
approach to reversible computing in which reversibility is elevated to the
status of the main design principle. These initial models are expressed
using low-level bit manipulations, however.

Abstracting from the low-level of the Bennett-Fredkin-Toffoli models and
pursuing more intrinsic, typed, and algebraic models, naturally leads to
rig categories as the canonical model for compositional reversible pro-
gramming. The categorical model reveals connections to type isomor-
phisms, symmetries, permutations, groups, and univalent universes. This,
in turn, paves the way for extensions to reversible programming based on
monads and arrows. These extensions are shown to recover conventional
irreversible programming, a variety of reversible computational effects,
and more interestingly both pure (measurement-free) and measurement-
based quantum programming.

Keywords: Rig Categories - Information Effects - Quantum Comput-
ing.

1 Introduction

In 1992, Baker proposed “an abstract computer model and a programming
language—¥-Lisp—whose primitive operations are injective and hence reversible” [§].
The proposal was motivated by both software engineering and physics.

The software engineering perspective, building on earlier insights by Mec-
Carthy [46] and Zelkowitz [60], recognizes that reversibility is a pervasive occur-
rence in a large number of programming activities:
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The need to reverse a computation arises in many contexts—debugging,
editor undoing, optimistic concurrency undoing, speculative computa-
tion undoing, trace scheduling, exception handling undoing, database
recovery, optimistic discrete event simulations, subjunctive computing,
etc. The need to analyze a reversed computation arises in the context
of static analysis—liveness analysis, strictness analysis, type inference,
etc. Traditional means for restoring a computation to a previous state
involve checkpoints; checkpoints require time to copy, as well as space
to store, the copied material. Traditional reverse abstract interpretation
produces relatively poor information due to its inability to guess the
previous values of assigned-to variables.

The more foundational physics perspective recognizes that a “physics revolu-
tion is brewing in computer science.” This “physics revolution” traces to develop-
ments started 20 years earlier beginning with an analysis of logical (ir)reversibility
and its connection to physical (ir)reversibility by Landauer [39]. This initial anal-
ysis demonstrated how an isolated irreversible computation can be embedded in
a larger reversible one but failed to solve the problem of composing such embed-
dings. The solution to this puzzle was provided a decade later by Bennett [9];
it involved a general idiom compute-copy-uncompute that proved crucial for fur-
ther developments. A few years later, Fredkin and Toffoli [20/50] finally designed
a foundational model of composable reversible computations based purely on
reversible primitives.

In our survey of part of the landscape of reversible computation, we start
by reviewing the research initiatives whose goal is to develop a reversible pro-
gramming language starting from existing (irreversible) languages. We will then
consider the more foundational idea of taking reversibility as the main prim-
itive notion, formalizing it, and extending it in principled ways to realize the
full potential of the “physics revolution in computer science.” In more detail,
Sec. |2 reviews the early historical proposals for reversible computing character-
ized by using global history mechanisms. Sec. [3] discusses one of the crucial ideas
necessary for compositional reversible computing: the compute-copy-uncompute
paradigm. Sec. [f] exploits the power of categorical semantics to naturally express
compositional reversible computing. Sec. [5] discusses general classes of reversible
computational effects concluding with the “fundamental theorem of reversible
computation.” Sec. [6] shows that the categorical models of classical reversible
computing with computational effects extend to quantum computing. We con-
clude with an assessment of the broad impacts of “reversibility” on the discipline
of computer science.

2 Reversibility from Global Histories

The most familiar sequential models of computation are the Turing machine and
the A-calculus. Both were proposed in the 1930s [I7J58]. In the concurrent world,
we have the influential models of Communicating Sequential Processes (CSP),
the Calculus of Communicating Systems (CCS), and the m-calculus [29/4748].
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The methods used to derive a reversible variant of these models of compu-
tation are similar. In each case, additional constructs are added to record the
information necessary for reversibility. In what follows, we discuss how to do this
for the reversible extension of the A-calculus [57] and the reversible extensions
of CCS called Reversible CCS (RCCS) and CCS with keys (CCSK) [I851].

The operational semantics of both sequential and concurrent programming
languages is often specified using local reductions, e.g., A — B. In a deterministic
language A uniquely determines B but if the language is not reversible, the
converse is not true. In other words, it is possible for have instances of reductions
where both A; — B and Ay — B.

A straightforward way to ensure each reduction is reversible is to record
additional information to disambiguate the lefthand sides. In the simplest case,
we introduce a history mechanism H where we record the entire term on the
lefthand side, i.e., the reductions above become:

(H | A1) = (H, A1 | B)
(H | A2) = (H, A2 | B)

An adequate history mechanism disambiguates which path the computation took
to get to B, so that we now have enough information to reverse the reductions:

(H | A1) < (H, A1 | B)
(H | A2) ¢=u (H, A2 | B)

This simple scheme can be optimized in many ways to manage the history
more efficiently. However, a fundamental limitation of this approach is that it
fails to be compositional: Consider a term that includes both A; and A, as sub-
terms and where A; should make a forward transition and As make a backwards
transition. Both sub-reductions require incompatible actions on the global his-
tory mechanism and direct composition is not possible. As the analysis of this
problem in the context of CCSK shows [4], the best solution is to take reversibil-
ity as a basic building block, instead of a property to be achieved by extensions
to an irreversible language.

3 Reversibility from Local Histories

In keeping with the approach above, Landauer observed that any Turing ma-
chine can be altered to operate reversibly by adding a dedicated history tape to
it, recording each computational action on this tape as it occurs. However, Lan-
dauer also observed that, from a thermodynamic point of view, this approach
is fundamentally unsatisfactory in that it merely delays rather than avoids the
thermodynamic cost associated with the erasure of unwanted information [39]:
to be able to reuse the tape, its contents must first be erased. To Bennett, this
meant that the usefulness of a reversible computer hinged on the ability to avoid
this problem, leaving behind “only the desired output and the originally fur-
nished input” when it halts [J] (remarking that the preservation of the input
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Stage Tape 1 Tape 2 Tape 3
Initial configuration Input - -
Compute Output History —
Copy Output History Output
Uncompute Input — Output

Fig. 1. Bennett’s construction of a standard reversible 3-tape Turing machine, starting
from an arbitrary Turing machine instrumented to record its history on a dedicated
tape.

Stage Tape 1 Tape 2
Initial configuration Input -

Copy Input Input
Compute Output Input
Relabel Input  Output

Fig. 2. An overly simple 2-tape Turing machine that “looks” like it operationally does
the same as Bennett’s construction.

is necessary to realize computable functions which happen to not be injective).
This was likely the first instance of reversibility as compositionality, and has
since been rediscovered numerous times in the context of circuits, programming
languages, and categorical semantics.

It is amusing to note that “undo/redo” functionality in modern user-interfaces
use either the Command Pattern or the Memento Pattern, which both amount
to the non-composable Landauer encoding.

3.1 Bennett’s Trick

The key insight behind Bennett’s trick is that the use of uncomputation (i.e.,
inverse interpretation of a reversible Turing machine) can reduce the dependence
on a computation history to the preservation of the input. This is done by
proceeding in three stages (see Figure|l]): compute executes the Turing machine
to obtain the output and its history, copy copies the output onto a dedicated
output tape (assumed to be empty), and uncompute executes the Turing machine
in reverse to reduce the output and history to the original input.

If we think of the computation history more generally as the garbage that is
inevitably produced during computation (i.e., temporary storage needed during
computation that can safely be discarded afterwards), Bennett’s trick gives a
reversible way of managing garbage without having to erase it outright. This
allows procedures that use the same pool of temporary storage to be composed
without incident, as they can all safely assume the store to be empty when
needed. This technique is used to manage memory in, e.g., reversible program-
ming languages [5] and reversible circuits [55].

Naively, one might suppose that a simpler approach (see Figure might work
too. The problem is that this only works when the Turing machine is reversible to
begin with! Furthermore, what is “Relabel”? Is that even an available operation



Compositional Reversible Computation 5

on Turing machines? We could think of replacing Relabel with some kind of
Swap operation, but since there is no guarantee that Input and Output are the
same length, this operation is not reversible either without further assumptions.
Another way to look at it: if one were working in a dependently typed language,
Bennett’s construction would require a proof that the history information is
sufficient to actually drive the given Turing machine deterministically backwards.

3.2 Reversibility as a Local Phenomenon

While it seems clear that maintaining a history during computation is a gen-
eral method for guaranteeing that the resulting Turing machine is reversible, it
doesn’t actually answer what it means for a Turing machine to be reversible in
the first place.

Lecerf [41] answered this by defining a reversible Turing machine to be one
where at each computational state, there is at most one next state and at most
one previous state. We can express this more precisely using the judgement
o F ¢ | o', taken to mean that executing the command ¢ while the machine
is in state o leads the machine to transition to the state o’. The unicity of
the next and previous states become the statements (see, e.g., [22]) that for all
commands ¢ and origin states o, there is at most one next state o’ such that
ot cl o' (forward determinism); and for all commands ¢ and states ¢’, there is
at most one origin state o such that o ¢ | ¢’ (backward determinism).

This establishes reversibility as a local phenomenon linked directly to compo-
sitionality: it is not enough to compute an injective function (a global property)
to be reversible, it must also be done by taking only invertible steps along the
way. Indeed, a defining consequence of this very strong conception of reversibility
(amusingly dubbed the “Copenhagen interpretation” of reversible computation
by Yokoyama [2216]) is the property of local invertibility, allowing a reversible
machine (or program) to be inverted by recursive descent over the syntax [21].
This idea was taken to its logical conclusion in the (explicitly compositional)
denotational account of reversibility [36], where it was argued that a program
should be considered to be reversible just in case it can be constructed by com-
bining only invertible parts in ways that preserve invertibility. A reasonable place
to take such denotational semantics is in categories of invertible maps, such as
inverse categories [3735] and groupoids [I3IT4UT].

4 Rig Groupoids

Category theory deals with abstractions in a uniform and systematic way, and
is widely used to provide compositional programming semantics. We briefly dis-
cuss the types of categories that are useful in reversible programming: dagger
categories and rig categories.
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4.1 Dagger Categories and Groupoids

A morphism f: A — B is invertible, or an isomorphism, when there exists a
morphism f~': B — A such that f~'o f =ids and fo f~' = idg. This inverse
f~!is necessarily unique. A category where every morphism is invertible is called
a groupoid. At first sight, groupoids form the perfect semantics for reversible
computing. But every step in a computation being reversible is slightly less
restrictive than it being invertible. For each step f: A — B, there must still be a
way to ‘undo’ it, given by fT: B — A. This should also still respect composition,
in that (go f)' = fTogl and idl, = ida. Moreover, a ‘cancelled undo’ should
not change anything: ff = f. Therefore every morphism f has a partner ff. A
category equipped with such a choice of partners is called a dagger category.

A groupoid is an example of a dagger category, where every morphism is uni-
tary, that is, f1 = f=1. Think, for example, of the category FinBij with finite
sets for objects and bijections for morphisms. But not every dagger category is a
groupoid. For example, the dagger category PInj has sets as objects, and partial
injections as morphisms. Here, the dagger satisfies fo ff o f = f, but not neces-
sarily fTo f = id because f may only be partially defined. In a sense, the dagger
category PInj is the universal model for reversible partial computation [37I23].

When a category has a dagger, it makes sense to demand that every other
structure on the category respects the dagger, and we will do so. The theory of
dagger categories is similar to the theory of categories in some ways, but very
different in others [27].

4.2 Monoidal Categories and Rig Categories

Programming becomes easier when less encoding is necessary, i.e. when there are
more first-class primitives. For example, it is handy to have type combinators
like sums and products. Semantically, this is modeled by considering not mere
categories, but monoidal ones. A monoidal category is a category equipped with
a type combinator that turns two objects A and B into an object A ® B, and
a term combinator that turns two morphisms f: A — B and f': A’ — B’ into
a morphism f ® f': A® A’ — B ® B’. This has to respect composition and
identities. Moreover, there has to be an object I that acts as a unit for ®, and
isomorphisms a: A® (B®C) - (A®B)@Cand \: I® A — Aand p: A®
I — A. In a symmetric monoidal category, there are additionally isomorphisms
0: A® B — B ® A. All these isomorphisms have to respect composition and
satisfy certain coherence conditions, see [44] or [28, Chapter 1]. We speak of
a (symmetric) monoidal dagger category when the coherence isomorphisms are
unitary. Intuitively, go f models sequential composition, and f®g models parallel
composition. For example, FinBij and PInj are symmetric monoidal dagger
categories under cartesian product.

A rig category is monoidal in two ways in a distributive fashion. More pre-
cisely, it has two monoidal structures & and ®, such that @ is symmetric
monoidal but ® not necessarily symmetric, and there are isomorphisms d;,: A®
(BaC)— (A®@B)® (A®C) and §p: A®0 — 0. These isomorphisms again



Compositional Reversible Computation 7

bu=0]1|b+b|bxd (value types)
ti=b<+b (combinator types)
in=1d | swap™ | assocr™ | assocl™ | unite™l | unititl (isomorphisms)

| swap™ | assocr™ | assocl™ | unite™1 | uniti*1
| dist | factor | absorbl | factorzr

cu=ilcgelete|exel|inec (combinators)

Fig. 3. II syntax

id : b<b :id
swap™ : b1 + b2 <> ba + by : swap™
assocr™ : (b1 + b2) + b3 <> b1 + (b2 + b3) . assocl™
unitetl : 0O+b<b s unati Tl
swap™ : b1 X by < by X by : swap™
assocr™ ¢ (b1 X ba) X bz +> by X (ba X b3) . assocl™
unite™ 1 : 1xb< b s unati <1

dist : (b1 + bz) X b3 <> (bl X bg) + (bg X b3) :factor
absordl : bx0+0 : factorzr
Clib1<—>b2 622b2<—>b3 Clb1<—>b2
C1302:b1<—>b3 v c: by < by
Cltb1<—>b3 621b2<—>b4 61:b1(—>b3 CQIb2<—>b4
c1+co:bi +bo <> b3z + by c1 X C2:b1 X bo <> b3 X by

Fig. 4. Types for II combinators

have to respect composition and certain coherence conditions [40]. For exam-
ple, FinBij and PInj are not only monoidal under cartesian product, but also
under disjoint union, and the appropriate distributivity holds. Intuitively, given
fitA->Bandg:C—D, f&g: A®C — B& D models a choice between f
and g, predicated on whether it gets an A or a B as choice of input.

4.3 The Canonical Term Model IT

Given a rig groupoid, we may think of the objects as types, and the morphisms
as terms [42]. The syntax of the language IT in Fig. [3| captures this idea. Type
expressions b are built from the empty type (0), the unit type (1), the sum type
(4), and the product type (x). A type isomorphism ¢ : by <> by models a re-
versible function that permutes the values in b and bs. These type isomorphisms
are built from the primitive identities ¢ and their compositions. These isomor-
phisms correspond exactly to the laws of a rig operationalised into invertible
transformations [I4JI3] which have the types in Fig. [4} Each line in the top part
of the figure has the pattern c; : by <> by : co where ¢; and ¢y are self-duals; ¢;
has type b1 <> by and ¢y has type by <> b;.
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To recap, the “groupoid” structure arises when we want all terms of our
programming language to be typed, reversible and composable. The “rig” part,
is a pun on “ring” where the removal of the “n” indicates that we do not have
negatives. The multiplicative structure is used to model parallel composition,
and the additive structure is a form of branching composition. All this structure
is essentially forced on us once we assume that we want to work over the (weak)
semiring of finite types with products and coproducts. We remark that in the
categorical setting of IT, there are no issues in having terms like (assocr™ x factor)
of the form (c; X ¢) with ¢; is an isomorphism in the forward direction and co
is an isomorphism in the reverse direction. Composition is natural!

4.4 Finite Sets and Permutations

It is folklore that the groupoid of finite sets and permutations is the free sym-
metric rig groupoid on zero generators [7I38/40]. Given that the syntax of IT is
presented by the free symmetric rig groupoid, given by finite sets and permuta-
tions, the folklore result can be formally established [16]. The formal connection
provides an equational theory for IT that exactly includes all the necessary equa-
tions to decide equivalence of II programs.

4.5 Curry-Howard

Reversible computation also brings new light to the Curry-Howard correspon-
dence. The original correspondence, between type theory and logic, formally
focuses on equi-inhabitation. This is because while logically A and A A A (as
well as A and AV A) are logically equivalent, clearly, as types, A and A X A
(similarly, A and A 4+ A) are not equivalent. They are, however, equi-inhabited,
i.e we can show that a : A if and only if b: A X A, but the witnessing functions
are not inverses. We can thus say that the Curry-Howard correspondence focuses
on logically equivalent types (often denoted A < B).

In II, we replace logical equivalence by equivalence A ~ B. And what used
to be a correspondence between classical type theory (involving types, functions
and logical equivalence) and logic, transforms into a correspondence between
reversible type theory (involving types, reversible functions and equivalences)
and algebra, in this case rigs and their categorified cousins, rig categories. This
picture emerged in the first looks at IT [14/13] and was shown to be complete
more recently [I6]. In other words, IT is the inevitable programming language
that arises from universal reversible computing being semantically about FinBij.

5 Reversible and Irreversible Effects

Expressing reversibility in a categorical setting enables the integration of addi-
tional constructs using universal categorical constructions such as monads and
arrows.
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5.1 Frobenius Monads and Reversible Arrows

So far, we have modeled computations as morphisms in a category. But often
it makes sense to separate out specific aspects of computation, distinguishing
between pure computations, that only concern themselves with computing val-
ues, and effectful computations, that can additionally have side effects, such as
interacting with their environment through measurement.

A monad T is a way to encapsulate computational side effects in a modular
way. If A is an type, then T'(A) is the type of A with possible side effects. For
example, for the maybe monad T(A) = A+ 1, a term of type T(A) is either a
term of type A or the unique term of type 1, which may be thought of as an
exception having occurred.

Regarding morphisms A — B as pure computations, computations that can
have side effects governed by T are then morphisms A — T'(B). For this to make
sense, we need three ingredients, which are what makes 7" into a monad: first, a
way to consider a pure morphism A — B as an effectful one A — T'(B); second,
to lift a pure morphism A — B to the effectful setting T(A) — T(B); and third,
a way to sequence effectful computations f: A — T'(B) and g: B — T(C) into
f > g: A — T(C). The resulting category of effectful computations is called
the Kleisli category of the monad T [49].

What about the reversible setting? If the category of pure computations has
a dagger, when does the category of effectful computations have a dagger that
extends the reversal of pure computations? It turns out that this can be captured
neatly in terms of the monad alone. The Kleisli category has a dagger if and only
if the monad is a dagger Frobenius monad [27], meaning that

T(N)' =T(f) and  T(pa) o ph 4y = pray o T(ph),

where pa: T(T(A)) — T(A) is the sequencing of the identity T(A) — T(A),
regarded as an effectful computation from T'(A4) to A, with itself.

More generally, we can talk about arrows instead of monads. These still allow
a sequential composition of effectful computations [30I33], and still extend to the
reversible setting [20].

5.2 The Fundamental Theorem of Reversible Computation

In this section, we define and further discuss the fundamental theorem of re-
versible computing in terms of universal properties. These are categorical prop-
erties that characterize the result of some construction in terms of its behavior
only and not in terms of the particular construction itself. For example, singleton
sets 1 are characterized by the fact that there is a unique function A — 1 for
any set A; notice that the property only speaks about morphisms into 1, and
never about how 1 is built of a single element. We say that 1 is a terminal object
in the category of sets and functions. In the opposite direction, the empty set is
an initial object, meaning that there is a unique function 0 — A for any set A.
Similarly, the cartesian product A x B of sets can be characterized universally
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as a categorical product of A and B, and the disjoin union A + B as a coprod-
uct: these are the universal objects equipped with projections A« Ax B —+ B
respectively injections A — A+ B < B [42].

The fundamental theorem of reversible computing (originally proved by Tof-
foli for functions over finite collections of boolean variables [56]) can now be
phrased categorically as follows [25].

We first recall the LR-construction [3] which turns a rig category into another
category where I is terminal and 0 is initial. In more detail, morphisms A — B
in the new category LR[C] are morphisms A ¢ H — B ® G in the old category
C, which we identify if they behave similarly on the ‘heap’ H and ‘garbage’ G.
The fundamental theorem of reversible computing follows by noting that there is
an inclusion from the category Bij of sets and bijections to the category Set of
sets and all functions. Then, by the universal property of the LR-~construction,
this inclusion factors through a functor LR[Bij] — Set. Any function in Set is
in the image of this functor. In other words, any function f: A — B is of the
form 4

A A+ H = BxG-" B,

where ¢ is a coproduct injection, 7 is a product projection, GG is the garbage, and
the function in the middle is a bijection

6 Quantum Effects

It turns out that the standard model of quantum computing is a dagger rig cat-
egory. It is therefore natural to investigate the classical-quantum connection(s)
by investigating the corresponding instances of rig categories.

6.1 The Hilbert Space Model

Quantum computing with pure states is a specific kind of reversible comput-
ing [59/50]. A quantum system is modeled by a finite-dimensional Hilbert space A.
For example, qubits are modeled by C2. The category giving semantics to finite-
dimensional pure state quantum theory is therefore FHilb, whose objects are
finite-dimensional Hilbert spaces, and whose morphisms are linear maps. Cate-
gorical semantics for pure state quantum computing is the groupoid Unitary of
finite-dimensional Hilbert spaces as objects with unitaries as morphisms. Both
are rig categories under direct sum @ and tensor product ®.

The pure states of a quantum system modeled by a Hilbert space A are
the vectors of unit norm, conventionally denoted by a ket |y) € A. These are
equivalently given by morphisms C — A in FHilb that map z € C to z |y) € A.

5 As noted earlier, Toffoli only proved this for finite sets. We thank Tom Leinster
for the following neat proof for infinite sets. In a category with products, every
morphism f: A — B factors as a split monic (1, f): A — A x B followed by a
product projection A x B — B. But in Set, split monics are exactly the same as
injections, which are coproduct injections up to an isomorphism.
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Dually, the functional A — C which maps y € A to the inner product (z|y) is
conventionally written as a bra (x|. Morphisms A — C are also called effects.

In fact, FHilb is a dagger rig category. The dagger of linear map f: A — B is
uniquely determined via the inner product by (f(z)|y) = <a:| f1(y)). The dagger
of a state is an effect, and vice versa. In quantum computing, pure states evolve
along unitary gates. These are exactly the morphisms that are unitary in the
sense of dagger categories in that ff o f = id and f o f1 = id, exhibiting the
groupoid Unitary as a dagger subcategory of FHilb.

There is a way to translate the category FPInj of finite sets and partial
injections to the category FHilb, that sends {0,...,n — 1} to C™. This trans-
lation preserves composition, identities, tensor product, direct sum, and dagger:
it is a dagger rig functor ¢2: FPInj — FHilb, that restricts to a dagger rig
functor FinBij — Unitary [?]. Thus reversible computing (FinBij) is to clas-
sical reversible theory (FPInj) as quantum computing (Unitary) is to quantum
theory (FHilb). In particular, in this way, the Boolean controlled-controlled-not
function (known as the Toffoli gate), which is universal for reversible computing,
transfers to a quantum gate with the same name that acts on vectors.

6.2 The Hadamard Mystery

Shi established that quantum computing can be characterized as a relatively
small increment over classical computing [53]. The precise statement below is
adapted from Aharonov’s reformulation of Shi’s result [2].

Theorem 1. The set consisting of just the Toffoli and Hadamard gates is com-
putationally universal for quantum computing. By computationally universal, we
mean that the set can simulate, to within e-error, an arbitrary quantum circuit
of n qubits and t gates with only poly-logarithmic overhead in (n,t,1/¢).

The result may appear counter-intuitive since it omits any reference to complex
numbers. The subtlety is that computational universality allows arbitrary—but
efficient—encodings of complex vectors and matrices.

The significance of this result is the following. The Toffoli gate is known to be
universal for classical computing over finite domains [56]. Thus, in one sense, a
quantum computation is nothing but a classical computation that is given access
to one extra primitive, the Hadamard transform.

Once expressed in rig categories, this result allows novel characterizations of
quantum computing. The key to these characterizations is that quantum gates
are not black boxes in rig categories: they are “white boxes” constructed from
@ and other primitives which means that can be decomposed and recomposed
during rewriting using the coherence conditions of rig categories. For example,
while a circuit theory will allow one to derive that 7" = S, it is unable to pro-
vide justification for this in terms of the definitions of S and 7. On the other
hand, the rig model reduces this equation to the bifunctoriality of & and the
definitions of S and T'. This style of reasoning enabled two recent characteriza-
tions of quantum computing by (universal) categorical constructions. In the first
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paper [15], Hadamard is recovered by two copies of IT mediated by one equation
for complementarity. In the second paper [12], Hadamard is recovered by postu-
lating the existence of square roots for certain morphisms, i.e. the existence of

morphisms +/f such that +/f o /f = f.

6.3 Quantum Information Effects

Information effects [3425] emulate the dynamics of open systems using the re-
versible dynamics of closed systems, by extending the latter with the ability to
hide parts of the input and output spaces. This allows auxiliary states to be pre-
pared and (parts of ) the output to be discarded — as a consequence, measurement
is recovered in the quantum case.

This idea comes from the theory of quantum computation, where Stine-
spring’s dilation theorem [54] (see also [32I31124]) provides a recipe for recon-
structing the reversible dynamics of an irreversible quantum channel by outfit-
ting it with an auxiliary system that can be used as a sink for the data that the
process discards.

Concretely, given a quantum channel A : H — K (which can be thought
of as a quantum circuit where measurements can occur), Stinespring’s theorem
argues that it is always possible to factor a quantum channel as an isometry
(a kind of injective quantum map) V : H — H ® G followed by a projection
m : H®G — H. Note that projection is not as innocuous as it is in the classical
case, since it may lead to the formation of probabilistic (mixed) states. In turn, it
can be shown that every isometry can be realized by fixing a part of the input to
a reversible (unitary) quantum map [31]: in other words, every isometry factors
as an injection ¢; : H — H & E (fixing a part of the inputs) followed by a
reversible (unitary) quantum map U : H @ F — K.

Putting these two factorizations together, we get that any quantum channel
(i.e., irreversible quantum process) A : H — K factors (in an essentially unique
way) into three stages:

reversible dynamics

prepare auxiliary state
H

discard environment
Hed K®FE K

Put another way, every quantum channel can be written as a unitary in which
a part of the input (corresponding to the subsystem G above receiving a fixed
state) and a part of the output (corresponding to the subsystem E above that
is discarded after use) is hidden from view.

This factorization is clearly reminiscent of the fundamental theorem of re-
versible computing and the LR-construction of Sec. . More concretely, we
define the hiding of the input and output through a stack of two separate ef-
fects, which turn out to correspond to Arrows, and so give suitable notions of
effectful programs with sequential and parallel composition. To that end, we
define IT with allocation to have the same base types b as IT, and with the com-
binator type b;  by. Terms in II with allocation are given by the formation

rule:
u: b1 + bg A d bg

lift(u) : by — by
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That is, terms in IT with allocation are given by II terms where part of their
input is hidden. Additionally, we consider two terms in II with allocation to be
equal if they are equal up to an arbitrary term applied on the hidden part alone.
These terms can be composed in sequence by:

lift(w) > lift(v) = lift(assocl™ g (u @ id) gv)

and it can be shown that this is associative, and that lift(unite™) acts as the
identity with respect to composition. More generally, every IT term u : by — bo
can be turned into one arr(u): by — by that acts as u does by letting it hide
only the empty system, that is:

arr(u) = lift(unite™ gu)

Finally, it can be shown that this also allows a parallel composition lift (u)#lift(v)
to be defined, giving it all the structure of an Arrow.
A consequence of these definitions is that can define a new term

alloc = lift(unite™1): 0 — b

which can be thought of as allocating a constant value from a hidden heap. It can
be shown that this ability to allocate new constants is enough to extend IT with
the ability to perform arbitrary injections inl:b; ~— by +by and inr:by — by +bo,
and to do classical cloning via a term clone : b — b x b. This is the first step of
two in recovering open system dynamics from their reversible foundations.

The second step is a study in duality: to further extend II with allocation
and hiding, we introduce yet another arrow whose base types are the same as
those of IT, and whose combinator types are given by a new type by ~» by. Terms
in this new layer are formed by the rule:

(O b1 — b2 X b3

lzﬁ(v) . b1 ~ bQ
and, by analogy to the previous definitions, one can define sequential and parallel
composition, identities, and the lifting of arbitrary terms v : by — by to arr(v) :
b1 ~» by by adjoining the trivial system 1. This gives it the structure of an arrow.
A consequence of this is that arbitrary data can now be discarded via a term
discard : b ~~ 1, and by combining this with parallel composition and the unitor
unite™ :b x 1 b, we obtain projections fst:by X by ~ by and snd :by X by ~ bg,
completing our journey from fully reversible to fully irreversible dynamics.

While it seems clear that we can recover irreversible classical computing
from their reversible foundations by extending them with the ability to allocate
constants and hide arbitrary data, it is less clear that one can also recover irre-
versible quantum computing this way. Surprisingly, this is so, with measurement
(i.e., the map that sends a quantum state to its post measurement state af-
ter measurement in the computational basis) given the (classically nonsensical)
term:

measure = clone 3> fst : b~ b .

and it can be verified that this recovers the usual Born rule assigning probabilities
to classical measurement outcomes.
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7 Conclusions and Future Research

Pragmatically, reversible computing, reversible programming languages, and bidi-
rectional methods in computing have unified many of the original software engi-
neering instances of reversibility which is clearly a positive contribution to the
field of computer science.

But it has been 32 years since Baker stated that a “physics revolution is brew-
ing in computer science” and it is fair to ask to what extent has this “revolution”
been realized?

From the very beginning, one of the most common arguments for the physics
revolution in computer science has been the potential to drastically reduce the
energy needs of computation. The reasoning is that only irreversible operations
need to dissipate heat and hence reversible computing can in principle oper-
ate near the thermodynamic limit. Despite its theoretical plausibility and its
experimental validation [39/T0], the promise of drastically more energy-efficient
computers has not yet materialized.

We argue that the real revolution is more of a conceptual one, affecting what
we mean by computation, logic, and information, and unifying them in ways
that give new insights about the nature of logic and the fundamental limits of
information processing by computers.

On the one hand, treating information as a first-class entity promotes sev-
eral ad hoc techniques to the fold of well-established logical and semantic tech-
niques. Examples includes the methods used in applications such as quantitative
information-flow security [52], differential privacy [19], energy-aware comput-
ing [43J61], VLSI design [45], and biochemical models of computation [I1].

On the other hand, reversible computing is the first key to understanding
how Nature computes, how to integrate computational models with their phys-
ical environments, and to explore new modes of computation such as molecular
computing, biologically-inspired computing, neuromorphic computing, emerging
phenomena in complex systems, and of course quantum computing.
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