
Reversible Programs Have Reversible Semantics

Robert Glück1, Robin Kaarsgaard1, and Tetsuo Yokoyama2

1 DIKU, Department of Computer Science, University of Copenhagen, Copenhagen
2 Dept. of SW, Nanzan University, Nagoya, Japan tyokoyama@acm.org

Abstract. During the past decade reversible programming languages
have been formalized using various established semantics frameworks.
Common to these semantics is that they are ineffective at specifying
the distinct properties of reversible languages at the metalevel, even in-
cluding the central question whether the defined language is reversible.
In this paper, we build upon a metalanguage foundation for reversible
languages based on the category of sets and partial injective functions.
We exemplify our approach by a step-by-step development of the full se-
mantics of an r-Turing complete reversible while-language with recursive
procedures. This leads to a formalization of the semantics in which the
reversibility of the language and its inverse semantics are immediate, as
well as the inversion of programs written in the language. We discuss
further applications and directions for reversible semantics.

Keywords: Formal semantics · Reversible languages · Recursion · Iter-
ation · Partial injective functions.

1 Introduction

During the past decade reversible programming languages ranging from imper-
ative to functional and object-oriented languages have been formalized using
established semantics frameworks, such as state transition functions, structural
operational semantics, and recently denotational semantics (e.g. [19, 18, 6, 7]).
These frameworks, which have been used to give meaning to advanced language
features and computation models, such as nondeterminism and parallelism, have
turned out to be ineffective at specifying the distinct semantics properties of re-
versible languages. Even the central question whether a language is reversible
cannot be answered immediately, likewise questions about the uniqueness of the
inverse semantics and the inversion of programs in such languages.

In this paper, we build on a metalanguage foundation for reversible lan-
guages based on the category PInj of sets and partial injective functions. The
philosophy behind this approach is straightforward: Interpretations of syntax
are composed in ways that preserve their injectiveness. More specifically, inter-
pretations of syntax are composed by sequential composition, cartesian product,
disjoint union, and function inversion. For this we make use of the categorical
foundation developed elsewhere (e.g. [5, 11]). Our approach exploits the fact that
reversible programs have reversible semantics. We regard a program as (composi-
tionally) reversible iff each of its meaningful subprograms are partially invertible.

2 Glück et al.

This allows us to give a clean reversible semantics to a reversible programming
language.

We demonstrate the idea by a step-by-step development of a full formal se-
mantics of the r-Turing complete reversible while-language R-WHILE including
recursive procedures. This leads to a formal semantics in which the reversibility
of the language and its inverse semantics are immediate, as well as the inversion
of programs. The reversibility of the language follows immediately from the se-
mantics formalization. That the language is clean without hidden tracing can be
seen from the signature of the semantics functions. This approach is indepen-
dent of the specific language details and can be extended to other methods of
composing semantics functions, provided their injectiveness is preserved.

R-WHILE is a reversible while-language with structured control-flow opera-
tors, recursive procedures, and dynamic data structures [6, 7].3 The language
is reversibly universal, which means that it is computationally as powerful as
any reversible programming language can be. It has features representative of
reversible imperative and functional languages, including reversible assignments,
pattern matching, and access to the inverse semantics of procedures in programs.

The metalanguage used here has an interesting property familiar from re-
versible programming: It is not possible to define an irreversible (non-injective)
language semantics. Conventional metalanguages require a discipline to ensure
reversibility, e.g. a standard denotational semantics, or it is quite unclear how to
restrict them, e.g. to reversible inference systems. A future direction of research
can be the investigation of the extension of the metalanguage to capture others
forms of composition and language features, which may include object-oriented
features, combinators, and machine languages.

Overview: Section 2 introduces the elements of the formal semantics, while
Section 3 describes the reversible language R-WHILE. In Section 4 the formal
semantics of the language is developed step by step. Section 5 and Section 6 offer
related work, concluding remarks and directions for future work. We assume that
the reader is familiar with the basic notions of reversible languages (e.g., [18]).

2 Elements of the Formal Semantics

This section concerns some details on sets and partial injective functions as they
will be used in the sections which follow (compare, e.g., [2, 4, 15]). While the
constructions mentioned in this section all come from the study of the category
PInj of sets and partial injective functions, no categorical background is assumed
(though a basic understanding of sets, partial functions, and domain theory is).

2.1 Composition and Inversion

Partial functions are ordinary functions, save for the fact that they may be

undefined on parts of their domain. To indicate that a partial function X
f−→ Y

is undefined on some x0 ∈ X (e.g., in the definition of a piecewise function), we

3 An online interpreter for R-WHILE with procedures and the example program in this
paper are available at http://tetsuo.jp/ref/RPLA2019.

Reversible Programs Have Reversible Semantics 3

use symbol ↑. A partial function is injective iff whenever f(x) and f(y) are both
defined and f(x) = f(y), it is also the case that x = y. Injectivity is preserved

by composition (i.e., if X
f−→ Y and Y

g−→ Z are both partial injective functions

so is X
g◦f−−→ Z), and each identity function X

id−→ X is trivially injective.
Partial injective functions can be inverted in a unique way: for every partial

injective function X
f−→ Y there exists a unique partial injective function Y

f†

−→
X which undoes whatever f does (how rude!), in the sense that f ◦ f† ◦ f = f ,
and, vice versa, f† ◦ f ◦ f† = f†.

Aside from sequential composition, partial injective functions can also be
composed in parallel in two ways. The first is using the cartesian product of sets

X and Y , which we denote X ⊗ Y . If X
f−→ X ′ and Y

g−→ Y ′ are partial injective

functions, we can form a new one on the cartesian product, X⊗Y f⊗g−−−→ X ′⊗Y ′,
by (f ⊗ g)(x, y) = (f(x), g(y)). Note, however, that we do not have projections

(such as X ⊗ Y
π1−→ Y given by π1(x, y) = x) available, as these are never

injective. We will denote the unit, up to bijective correspondence, of the cartesian
product (any distinguished singleton set will do) by 1.

Another parallel composition is given on the disjoint union of sets X and Y ,
which we denote X ⊕ Y . We think of elements of X ⊕ Y as being tagged with
either left or right depending on their set of origin; for example, if x ∈ X then
inl x ∈ X ⊕Y , and if y ∈ Y then inr y ∈ X ⊕Y . Up to bijective correspondence,
the unit of disjoint union is the empty set ∅, which we will also denote as 0.

The tagged union of partial injective functions X
f−→ X ′ and Y

g−→ Y ′ is then a

partial injective function of tagged unions, X ⊕X ′ f⊕g−−−→ Y ⊕ Y ′, performing a
case analysis on the inputs and tagging outputs with their origin:

(f ⊕ g)(x) =

{
inl f(x′) if x = inl x′

inr g(x′) if x = inr x′

While the cartesian product lost its projections in the setting of partial injective
functions, the disjoint union retains its usual injections: There are injections
X

κ1−→ X ⊕ Y and Y
κ2−→ X ⊕ Y given by κ1(x) = inl x and κ2(y) = inr y.

Note in particular that since we consider partial injective functions, these have
partial inverses κ†i (sometimes called quasiprojections) which remove the tag,
but are only defined for elements from the i’th part of the union. For example,

X ⊕ Y
κ†
1−→ X is given by κ†1(inl x) = x and κ†1(inr y) = ↑.

Note finally the interactions between the cartesian product and disjoint
union: X ⊗ 0 is empty for all sets X, and analogous to the behaviour of ad-
dition and multiplication in a (semi)ring, there is a bijective correspondence
(given by the so called distributor) between X⊗ (Y ⊕Z) and (X⊗Y)⊕ (X⊗Z)
for all sets X,Y, Z.

2.2 Fixed Points and Iteration

Both sets and partial injective functions are well-behaved when it comes to
recursive definitions. For sets, any recursive definition of a set involving only

4 Glück et al.

disjoint unions, cartesian products, and already defined sets (including 0 and 1)
has a unique least and greatest solution: As is usual in domain theory, we use
µX . . . for the least solution (the least fixed point) and νX . . . for the greatest
solution (the greatest fixed point). For example, the set of lists with entries taken
from a set A is given by the least fixed point µX.1⊕ (A⊗X).

A useful property of partial functions, as opposed to total ones, is that
the set of all partial functions with specified domain and target forms a di-
rected complete partial order. This has useful consequences for the recursive
description of partial injective functions: In particular, any continuous func-
tion PInj(X,Y) → PInj(X,Y) (where PInj(X,Y) denotes the set of partial
injective functions between sets X and Y) has a least fixed point, which, by
its definition, must be a partial injective function X → Y (i.e., an element of
PInj(X,Y)). For the continuity requirement, we note that all previously pre-
sented operations on partial injective functions are continuous (i.e., sequential
composition, partial inversion, parallel composition using cartesian products and
disjoint unions), so any function involving only these operations is guaranteed
to be continuous.

Finally, partial injective functions can also be tail recursively described using

the trace operator. Intuitively, the trace of a partial injective function X ⊕U f−→
Y ⊕ U is a function X

Tr(f)−−−→ Y given as follows: If f(inl x) = inl y for some
y, this y is returned directly. Otherwise, if f is defined at inl x, it must be the
case that f(inl x) = inr u for some u. If this is the case, this inr u is fed back
into f , and the feedback loop continues until it either terminates to some inl y,
which is then returned, or does not, in which case the trace is undefined at x.

This trace operator may be described as a function PInj(X ⊕ U, Y ⊕ U)
Tr−→

PInj(X,Y). It is most easily described using a recursively described pretrace

PInj(X ⊕ U, Y ⊕ U)
pretrace−−−−→ PInj(X ⊕ U, Y) given as follows:

pretrace(f)(x) =

{
y if f(x) = inl y
pretrace(f)(inr y) if f(x) = inr y

With this, the trace is described simply as Tr(f)(x) = pretrace(f)(inl x). More
formally, it can also be described as a fixed point using the trace formula, see
[8]. While less general than the fixed point (which can be used to describe ar-
bitrary recursion), this tail recursion operator is very well behaved with respect
to inversion, as it satisfies Tr(f†) = Tr(f)† for all partial injective functions

X ⊕ U f−→ Y ⊕ U .
Now, we specify a metalanguage M for describing objects of PInj:

f ::= a | κi | id | µφ.f | f ⊕ f | f ⊗ f | f ◦ f | Tr(f) | f† | φ

All constructs appeared in this section except the atomic function a, which is
a user-defined partial injective function. The formal argument of the least fixed
point φ expects program contexts. For any expression inM, the least fixed point
exists.M is closed under inversion, and the inverse semantics of each expression
is obtained for free.

Reversible Programs Have Reversible Semantics 5

e ::= x | s | (e.e) | hd(e) | tl(e) | =? e e

q ::= x | s | (q.q) | call f(q) | uncall f(q)

c ::= x =̂ e | q ⇐ q | c; c | if e then c else c fi e | from e do c loop c until e

p ::= proc f(q) c; return q;

m ::= p · · · p
Fig. 1. The syntax of R-WHILE.

3 R-WHILE with Reversible Recursion and Iteration

This section describes the syntax and informal semantics of R-WHILE and illus-
trates it with a program that translates infix expressions into Polish notation.
The data domain of the language is tree-structured data (lists known from Lisp).
Readers familiar with reversible programming can skip to the example.

The syntax of the recursive language [7] is shown in Fig. 1. An expression e is
either a variable x, a symbol s, or the application of an operator, i.e. constructor
cons (· . ·), selectors head hd and tail tl, equality test =?. A variable x is denoted
by small letters, such as t, and a symbol s is overlined, such as nil .

A pattern q is a variable x, a symbol s, a pair of patterns (q.q), or a forward
or backward invocation of a procedure by call f(q) or uncall f(q). All patterns are
linear; procedure invocations can be nested. The meaning of a procedure uncall
is the inverse semantics of a procedure call. Procedures can only be invoked in
patterns, but patterns can appear in several places including the actual and
formal arguments of procedures, return commands, and reversible replacements.

A command c is either a reversible assignment x =̂ e, a reversible replacement
q ⇐ q, a reversible conditional if...fi, or a reversible loop from...until. The latter
two are the same control structures as in reversible flowchart languages (e.g.,
[18]). As usual, variable x in a reversible assignment x =̂ e must not occur in e
(e.g., x =̂ x is not well formed). It sets x to the value of e if x is nil , to the value
nil if the values of x and e are equal, or it is undefined. No value is copied by
q1 ⇐ q2. Before the value constructed by q2 is matched with q1, all variables in
q2 are nil-cleared, so the same variable may occur on both sides of a replacement.

A program m is a sequence of procedures, where the topmost procedure is the
main procedure. A procedure p has a name f , a formal argument q, a command
c as its body, and a return pattern q. The language has no global variables.

Example 1. Figure 2 shows the reversible recursive procedure pre that translates
infix expressions into prefix expressions (Polish notation) by a preorder traversal
of a full binary tree representing the infix expression. The procedure pre is called
and uncalled in procedures infix2pre and pre2infix to translate to and from Polish
notation, respectively. An infix expression is represented by a full binary tree

tree ::= a | (tree . (d . tree))

where a and d are the operand (leaf) and the operator (inner label), respectively.
The body of pre consists of a reversible conditional (lines 10–17) with an

entry predicate (=? t a) and an exit assertion (=? hd(y) a). If tree t is a leaf a,

6 Glück et al.

1: proc infix2pre(t)
2: y ⇐ call pre((t.nil));
3: return y;
4:

5: proc pre2infix (y)
6: (t.nil)⇐ uncall pre(y);
7: return t;
8:

9: proc pre((t.y))
10: if =? t a then
11: y ⇐ (t.y);
12: else
13: (l.(d.r))⇐ t;
14: y ⇐ call pre((r.y));
15: y ⇐ call pre((l.y));
16: y ⇐ (d.y);
17: fi =? hd(y) a;
18: return y;

(* infix exp to Polish notation *)

(* call preorder traversal *)

(* Polish notation to infix exp *)

(* uncall preorder traversal *)

(* recursive preorder traversal *)

(* tree t is leaf? *)

(* add leaf to list y *)

(* decompose node *)

(* traverse right subtree r *)

(* traverse left subtree l *)

(* add label d to list y *)

(* head of list y is leaf? *)

Fig. 2. Translation between infix expressions and Polish notation in R-WHILE.

t is added to the list y by the reversible replacement (line 11). Otherwise, in the
else-branch, pre calls itself recursively on the right and left subtrees r and l with
the current y (lines 14–15). List y is built from right to left, so d is added to
y after both subtrees are translated. The arity of all procedures is one, so it is
convenient to decompose the argument of pre by pattern (t.y) (line 9).

The inverse semantics of a procedure can be invoked by uncall. In procedure
pre2infix, the reversible replacement (t.nil) ⇐ uncall pre(y) is the inverse of
y ⇐ call pre((t.nil)). For example, the infix expression t = ((a . (d . a)) . (d . a)) is
translated into Polish notation y = (d . (d . (a . (a . (a . nil))))), and vice versa.

4 An Intrinsically Reversible Semantics

In this section, we illustrate the principle of reversible semantics by constructing
a denotational semantics for R-WHILE with procedures using sets and partial in-
jective functions. This is done first by constructing the domains of computation,
and then constructing a denotation function for each syntactic category. While
this results in a semantics for R-WHILE with procedures, we stress rather the
use of abstract concepts (e.g., cartesian products, disjoint unions, traces, and
fixed points) to construct these semantics in reversible programming languages
in general, rather than the concrete realization of R-WHILE with procedures.

4.1 States and Values

We begin by constructing the appropriate domains of computation for values
and states. To do this, we assume that we are given an alphabet Λ of symbols,
elements of which we denote using an overline, e.g., a, nil, etc. The set of values
V is then constructed as the set of binary trees with elements from Λ at the

Reversible Programs Have Reversible Semantics 7

leaves. More formally, this set can be constructed by the least fixed point of sets
V = µX.Λ⊕ (X⊗X). If t1 and t2 are such binary trees, we will use the notation
t1 • t2 (read: “t1 cons t2”) to mean the binary tree constructed from t1 and t2:

t1 t2

Using this definition, the set of states Σ can be con-
structed as colists (i.e., lists of infinite length) of values, that
is, Σ = Vω (explicitly, this is constructed as the largest fixed
point νX.I ⊕ (V ⊗ X)). In this semantics, we assume the
number of non-nil values in a state is finite. By associating each distinct variable
(of which there are countably many) with an index in ω, a state is then precisely
a description of the contents of all variables. In keeping with this principle, we
shall write variables as x1, x2, x3, etc. rather than (as is usual) as x, y, z etc.

4.2 Expressions

Expressions are interpreted as partial injective functions with the signature:

Σ ⊗ V
JeKexp−−−−→ Σ ⊗ V .

Regardless of their concrete form, interpretations of expressions are defined as

Je1Kexp(σ, v) =

{
(σ, Je1Kσexp) if v = nil

(σ, nil) if v = Je1Kσexp 6= nil

where JeKσexp ∈ V, given below, is understood as the interpretation of e in the
state σ. Concretely, it is defined as follows, depending on the form of e:

JxiKσexp = vi where σ = (v1, v2, . . . , vi, . . .)

Js1Kσexp = s1

Jcons(e1, e2)Kσexp = Je1Kσexp • Je2Kσexp

Jhd(e1)Kσexp =

{
v1 if Je1Kσexp = v1 • v2
↑ otherwise

Jtl(e1)Kσexp =

{
v2 if Je1Kσexp = v1 • v2
↑ otherwise

J=? e1 e2Kσexp =

{
nil • nil if Je1Kσexp = Je2Kσexp
nil otherwise

As such, the meaning of a variable in a state is given by its contents, and the
meaning of a symbol is given by its direct representation in the alphabet Λ. The
meaning of the cons of expressions is given by the cons of their meanings, while
the head (and the tail) of an expression takes the head (respectively tail) of its
meaning, diverging if not of this form.

The use of a non-injective function in part of an injective function is fre-
quently found in the context of reversible computing and the one used above is
generally referred to as the Bennett method.

8 Glück et al.

4.3 Patterns

Since patterns may include procedure invocation, the meaning of a pattern de-
pends on the program context φ in which it is interpreted. Patterns in a program
context are all interpreted as partial injective functions with the signature

Σ
JqKφpat−−−−→ Σ ⊗ V .

In particular, note that this signature allows patterns to alter the state. Indeed,
patterns may have side effects (here, in the form of altering the store): They
should be regarded as a means to prepare a given value in a state, in such a way
that may alter the state it began with. The interpretation of patterns is defined
as follows, depending on the form of p:

JxiK
φ
pat(σ) = ((v1, . . . , vi−1, nil, . . .), vi) where σ = (v1, . . . , vi−1, vi, . . .)

Jcall fi(q1)Kφpat(σ) = (σ′, (κ†i ◦ φ ◦ κi)(v)) where (σ′, v) = Jq1K
φ
pat(σ)

Juncall fi(q1)Kφpat(σ) = (σ′, (κ†i ◦ φ
† ◦ κi)(v)) where (σ′, v) = Jq1K

φ
pat(σ)

Jcons(q1, q2)Kφpat(σ) = (σ′′, v1 • v2)

where (σ′, v1) = Jq1K
φ
pat(σ) and (σ′′, v2) = Jq2K

φ
pat(σ

′)

The meaning of a variable, as a pattern, is to simultaneously extract its contents
and clear it. A procedure call call fi(q1) is interpreted as essentially passing
the meaning of q1 to the i’th component of the program context and extract-
ing from the i’th component afterwards, which, as we will see in Section 4.6,
corresponds precisely to invoking the i’th procedure. Uncall to a procedure is
handled analogously, but using the inverse to the program context instead. Fi-
nally, the meaning of a cons pattern is as a kind of sequential composition: First,
the meaning of q1 is executed, resulting in a new state σ′ and value v1. Then,
the meaning of q2 is executed in this new state σ′, yielding a final state σ′′ and
value v2. The two values are then consed together, finally resulting in the state
σ′′ and prepared value v1 • v2.

Uncall to a procedure is handled using the inverse procedure instead of the
inverse to the meaning of the procedure if the inverse procedure is in the proce-
dure context φ. We will see how to add the inverse procedures to the procedure
environment in Section 4.6.

4.4 Predicates

The predicate interpretation provides a different way of interpreting expressions
which are to be used to determine branching of control flow. They are interpreted
as partial injective functions with the signature

Σ
JeKpred−−−−→ Σ ⊕Σ .

The definition is based on the convention that an expression interpreted as nil
in a state σ is considered to be false in σ, and true otherwise. The predicate

Reversible Programs Have Reversible Semantics 9

interpretation of an expression e is defined as follows:

Je1Kpred(σ) =

{
inl σ if Je1Kσexp 6= nil
inr σ otherwise

As such, the predicate interpretation of e1 sends control flow to the first com-
ponent if e1 is considered true in the given state, and to the second component
otherwise. As we will see in Section 4.5, this style makes for a straightforward
interpretation of conditional execution of commands. Here, inl corresponds to
true and inr to false in the semantics level.

4.5 Commands

Commands in R-WHILE with procedures are interpreted as invertible state trans-
formations, i.e., as partial injective functions with signature

Σ
JcKφcmd−−−−→ Σ .

The interpretation of commands is defined as follows, depending on the syntactic
form of c:

Jc1; c2Kφcmd = Jc2Kφcmd ◦ Jc1Kφcmd

Jxi =̂ e1Kφcmd = (JxiKφpat)
† ◦ Je1Kexp ◦ JxiKφpat

Jq1 ⇐ q2Kφcmd = (Jq1Kφpat)
† ◦ Jq2Kφpat

Jif e1 then c1 else c2 fi e2Kφcmd = Je2K†pred ◦ (Jc1Kφcmd ⊕ Jc2Kφcmd) ◦ Je1Kpred

Jfrom e1 do c1 loop c2 until e2Kφcmd = Tr
(

(Jc2Kφcmd ⊕ id) ◦ Je2Kpred ◦ Jc1Kφcmd ◦ Je1K†pred
)

Note in particular the use of inverses to patterns and predicates in the definition
above. The inverse to a predicate corresponds to its corresponding assertion,
whereas the inverse to a pattern performs state preparation consuming (part of)
a value (rather than, in the forward direction, value preparation consuming part
of a state).

Pattern inverses are illustrated in both reversible assignments and pattern
matching, each consisting of a value preparation (indeed, the expression interpre-
tation can be seen as side-effect free value preparation), using the interpretation
of patterns, followed by a state preparation using the inverse. Similarly, the in-
terpretation of conditionals and loops relies on predicate inverses: In both cases,
they serve as conditional join points, corresponding to an assertion that e2 is
expected to be true when coming from the then branch of the conditional (re-
spectively from the outside of the loop), and false when coming from the else
branch (respectively from the inside of the loop).

4.6 Procedures

Since R-WHILE with procedures only uses local state, procedure definitions are
interpreted (in a program context) as partial injective value transformations,
i.e., partial injective functions of the form

V
JfKφproc−−−−→ V .

10 Glück et al.

To define the interpretation of procedures, we need an injective helper function

V ξ−→ Σ ⊗ V given by
ξ(v) = (#»o , v) ,

where #»o = (nil, nil, . . .) is the state in which all variables are cleared (i.e.,
contain nil). This canonical state is the initial computation state in which all
procedures are executed. A procedure definition in the program context φ is
interpreted as

Jproc f(q1); c; return q2Kφproc = ξ ◦ Jq2Kpat ◦ JcKφcmd ◦ (Jq1K
φ
pat)
† ◦ ξ† .

This definition should be read as follows: In the canonical state #»o , the state
described by the inverse interpretation of the input pattern q1 is first prepared.
Then, the body of the procedure is executed, resulting in a new state which is
then used to prepare a value as specified by interpretation of the output pattern
q2. At this point, the system must again be in the canonical state #»o , which, if
this is the case, can then be discarded, leaving only the output value.

4.7 Programs

Finally at the level of programs, these are interpreted as the meaning of their
topmost defined procedure, and, as such, are interpreted as partial injective
functions of the signature

V
JmKprg−−−−→ V .

Since procedures may be defined to invoke themselves as well as other procedures,
we need to wrap them in a fixed point, passing the appropriate program context
φ to each procedure interpretation. This yields the interpretation

Jf1 · · · fnKprg = κ†1 ◦ (µφ.Jf1Kφproc ⊕ · · · ⊕ JfnKφproc) ◦ κ1 .

Note the inner interpretation of procedures f1 · · · fn as a disjoint union Jf1Kφproc⊕
· · · ⊕ JfnKφproc: This gives one large partial injective function, which behaves just

the partial injective functions JfiKφproc when inputs are injected into the i’th
component, save for the fact that outputs (if any) are also placed in the i’th

component. This explains the need for injections κi and quasiprojections κ†i in
the definition of procedure calls in Section 4.3.

Proposition 1. R-WHILE with procedures is compositionally reversible.

Proof (Sketch). We will prove the proposition by structural induction on syntax

elements. For the base step, the meanings of atomic functions JxiK
φ
pat, Je1Kpred,

and ξ are straightforwardly verified to be partial injective functions (so invert-
ible). For the induction step, the meanings of function compositions are given
purely using means that preserve invertibility (trace, fixed points, composition,
inversion, cartesian product, disjoint union). ut

The interpretation (J·Kprg, J·Kφproc, and J·Kφcmd) maps syntax to injective (value,
store, . . .) transformations (on stores, values). The injective (value, store, . . .)
transformations can be expressed in M.

Reversible Programs Have Reversible Semantics 11

4.8 Use of Inverse Semantics

In conventional programming languages, the programs are not guaranteed to be
injective, obtaining the inverse programs needs global analysis, and the inverse
interpretation requires extra overhead. However, owing to the formalization, the
programs in the object languages expressed in M are always injective, their
inversion can be obtained by recursive descendent transformation, and the access
to their inverse semantics tends to require only the constant time overhead.
Moreover, our metalanguage is useful to derive the inverse program. For any
command c, the inverse of the semantics (JcKφcmd)† can be a composition of the
semantics of its components and traces, which can be mechanically obtained by
properties of PInj [5]. For example, we have (Jq1 ⇐ q2K

φ
cmd)† = ((Jq1K

φ
pat)
† ◦

Jq2K
φ
pat)
† = (Jq2K

φ
pat)
† ◦ Jq1K

φ
pat, and hence we obtain the inverse program (Jq1 ⇐

q2K
φ
cmd)† = Jq2 ⇐ q1K

φ
cmd. The right hand sides of the semantic function of

commands are mostly symmetric. Therefore, the inversion rules for them are
mechanically obtained in the similar way. The only exception is the loop, which
requires an extra identity Tr((f1 ⊕ id) ⊕ f2) = Tr(f2 ⊕ (id ⊕ f1)) to obtain the
inversion rule. The similar anti-symmetry appears in the operational semantics
in Janus [19], in which the rule of the loop can be either right or left recursive.

In the above pattern evaluation, the inverse semantics φ† of the program con-
text is used to realize uncall of procedures. The inverse semantics of procedures
is equal to the semantics of inverted procedures. This leads to an alternative
realization of the same meaning. First, we add the inverses of procedures in the
program context:

µφ. Jf1Kφproc ⊕ · · · ⊕ JfnKφproc ⊕ (Jf1Kφproc)
† ⊕ · · · ⊕ (JfnKφproc)

†

Then we uncall a procedure i in both forward and backward evaluation is handled
by invoking the (i+ n mod 2n)-th procedure.

5 Related Work

Formal meaning has been given to reversible programming languages using well-
established formalisms such as operational semantics to the imperative language
Janus [19], the functional language RFUN [17] and the concurrent languages [13],
small-step operational semantics to the assembler language PISA [1], transition
functions to the flowchart language RFCL [18], and denotational semantics to
R-WHILE [6, 7]. The reversibility of a language is not directly expressed by these
formalisms. It is up to the language designer’s discipline to express reversibil-
ity and to show the inversion properties for each language individually. Also,
the semantics of R-WHILE was first expressed irreversibly [19]. Type and effects
systems were studied for reversible languages [10].

The approach taken in this paper is to compose reversible elements by the
metalanguage M in ways that preserve their reversibility. Compositional ap-
proaches to reversibility have been used in various disguises including the di-
agrammatic composition of reversible circuits from reversible logic gates and

12 Glück et al.

reversible structured flowcharts from reversible control-flow operators [18]. Simi-
larly, reversible Turing machines were built from reversible rotary elements [14].

Implementing a language by translation and interpretation is another oper-
ational approach to a reversible semantics. Examples include reversible inter-
preters [6], translation of the high-level language R to the assembler language
PISA [3], and mapping hardware descriptions in SyReC to reversible circuits [16].
Reversible cellular automata may have non-injective local maps, but if the local
map is injective, the update by the global map is guaranteed to be reversible [12].

6 Conclusion

Reversible systems have reversible semantics. In the present paper, we build
upon a reversible semantics foundation intended to describe the semantics of
reversible languages, which we demonstrate by the full development of a se-
mantics for the reversible language R-WHILE. That the semantics foundation can
formalize a language that is as computationally as powerful as any reversible pro-
gramming language can be, also means that in general its expressiveness suffices
for describing reversible programming languages. The metalanguage allowed us
to concisely formalize features representative of many reversible programming
languages, including iteration, recursion, pattern matching, dynamic data struc-
tures, and the access to a program’s inverse semantics.

It could be interesting to further explore how object-oriented structures, com-
binators, or features for concurrency are best described and which metalanguage
features may be useful. Characterizing reversible heap allocation and concurrent
reversible computation are some of those challenges. However, its practical feasi-
bility and relationship to advanced reversible automata including nondetermin-
ism, e.g., [9] remains to be explored.

Acknowledgments. The third author is supported by JSPS KAKENHI Grant
Number 18K11250.

References

1. H. B. Axelsen, R. Glück, T. Yokoyama. Reversible machine code and its abstract
processor architecture. CSR, LNCS, Vol. 4649, 56–69. Springer-Verlag, 2007.

2. R. Cockett, S. Lack. Restriction categories III: Colimits, partial limits and exten-
sivity. Mathematical Structures in Computer Science, 17(4):775–817, 2007.

3. M. P. Frank. Reversibility for Efficient Computing. PhD thesis, MIT, 1999.
4. B. G. Giles. An Investigation of some Theoretical Aspects of Reversible Computing.

PhD thesis, University of Calgary, Canada, 2014.
5. R. Glück, R. Kaarsgaard. A categorical foundation for structured reversible

flowchart languages: Soundness and adequacy. Log. Meth. Comp. Sci., 14(3), 2018.
6. R. Glück, T. Yokoyama. A minimalist’s reversible while language. IEICE Trans-

actions on Information and Systems, E100-D(5):1026–1034, 2017.
7. R. Glück, T. Yokoyama. Constructing a binary tree from its traversals by reversible

recursion and iteration. IPL, 147:32–37, 2019.
8. E. Haghverdi. A Categorical Approach to Linear Logic, Geometry of Proofs and

Full Completeness. PhD thesis, Carlton University and University of Ottawa, 2000.

Reversible Programs Have Reversible Semantics 13

9. M. Holzer, M. Kutrib. Reversible nondeterministic finite automata. In I. Phillips,
H. Rahaman (eds.), RC, LNCS, Vol. 10301, 35–51. Springer, 2017.

10. R. P. James, A. Sabry. Information effects. In POPL, 73–84. ACM Press, 2012.
11. R. Kaarsgaard, H. B. Axelsen, R. Glück. Join inverse categories and reversible

recursion. J. Log. Algebr. Methods, 87:33–50, 2017.
12. J. Kari. Reversible cellular automata: from fundamental classical results to recent

developments. New Gener. Comput., 36(3):145–172, 2018.
13. S. Kuhn, I. Ulidowski. A calculus for local reversibility. In S. Devitt, I. Lanese

(eds.), RC, LNCS, Vol. 9720, 20–35. Springer-Verlag, 2016.
14. K. Morita. Reversible computing and cellular automata — A survey. Theor.

Comput. Sci., 395(1):101–131, 2008.
15. P. Selinger. A survey of graphical languages for monoidal categories. In B. Coecke

(ed.), New Structures for Physics, LNP, Vol. 813, 289–355. Springer-Verlag, 2011.
16. R. Wille, et al. SyReC: A hardware description language for the specification and

synthesis of reversible circuits. Integration, 53:39–53, 2016.
17. T. Yokoyama, H. B. Axelsen, R. Glück. Towards a reversible functional language.

In A. De Vos, R. Wille (eds.), RC, LNCS, Vol. 7165, 14–29. Springer-Verlag, 2012.
18. T. Yokoyama, H. B. Axelsen, R. Glück. Fundamentals of reversible flowchart

languages. Theor. Comput. Sci., 611:87–115, 2016.
19. T. Yokoyama, R. Glück. A reversible programming language and its invertible

self-interpreter. In PEPM, 144–153. ACM Press, 2007.

