
Reversible Programs Have Reversible Semantics

RPLA 

Robert Glück1, Robin Kaarsgaard1, Tetsuo Yokoyama2

October , 

1 DIKU, Department of Computer Science, University of Copenhagen, Denmark
2 Department of Software Engineering, Nanzan University, Japan

robin@di.ku.dk
http://www.di.ku.dk/~robin

mailto:robin@di.ku.dk
http://www.di.ku.dk/~robin


Reversible Programs Have Reversible Semantics

Logical Methods in Computer Science
Vol. 14(3:16)2018, pp. 1–38
https://lmcs.episciences.org/

Submitted Oct. 12, 2017
Published Sep. 05, 2018

A CATEGORICAL FOUNDATION FOR STRUCTURED REVERSIBLE
FLOWCHART LANGUAGES: SOUNDNESS AND ADEQUACY

ROBERT GLÜCK AND ROBIN KAARSGAARD

DIKU, Department of Computer Science, University of Copenhagen, Denmark
e-mail address: glueck@acm.org
e-mail address: robin@di.ku.dk

Abstract. Structured reversible flowchart languages is a class of imperative reversible
programming languages allowing for a simple diagrammatic representation of control flow
built from a limited set of control flow structures. This class includes the reversible
programming language Janus (without recursion), as well as more recently developed
reversible programming languages such as R-CORE and R-WHILE.

In the present paper, we develop a categorical foundation for this class of languages
based on inverse categories with joins. We generalize the notion of extensivity of restriction
categories to one that may be accommodated by inverse categories, and use the resulting
decisions to give a reversible representation of predicates and assertions. This leads
to a categorical semantics for structured reversible flowcharts, which we show to be
computationally sound and adequate, as well as equationally fully abstract with respect to
the operational semantics under certain conditions.

1. Introduction

Reversible computing is an emerging paradigm that adopts a physical principle of reality
into a computation model without information erasure. Reversible computing extends the
standard forward-only mode of computation with the ability to execute in reverse as easily
as forward. Reversible computing is a necessity in the context of quantum computing and
some bio-inspired computation models. Regardless of the physical motivation, bidirectional
determinism is interesting in its own right. The potential benefits include the design
of innovative reversible architectures (e.g., [34, 33, 37]), new programming models and
techniques (e.g., [40, 17, 28]), and the enhancement of software with reversibility (e.g., [8]).

Today the semantics of reversible programming languages are usually formalized using
traditional metalanguages, such as structural operational semantics or denotational semantics

Key words and phrases: Reversible computing, flowchart languages, structured programming, categorical
semantics, category theory.

This is the extended version of an article presented at MFPS XXXIII [16], extended with proofs that
previously appeared in the appendix, as well as new sections on soundness, adequacy, and full abstraction.

The authors acknowledge the support given by COST Action IC1405 Reversible computation: Extending

horizons of computing. We also thank the anonymous reviewers of MFPS XXXIII for their thoughtful and
detailed comments on a previous version of this paper.

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.23638/LMCS-14(3:16)2018

c� Glück and Kaarsgaard
CC� Creative Commons





Overview

. The formalization problem

. RWHILE with procedures

. PInj: A reversible metalanguage

. Aspects of the semantics

. Concluding remarks





The formalization problem



The formalization problem

Suppose that you’re in the process of designing a new reversible programming
language, L.

To give L-programs meaning, you define a simple operational semantics for L.

σ ⊢ b1 ⇝ tt σ ⊢ c1 ↓ σ′ σ′ ⊢ b2 ⇝ tt
σ ⊢ if b1 then c1 else c2 fi b2 ↓ σ′

How do you show that L is reversible? You prove a theorem.





The formalization problem

Proving reversibility of (imperative) reversible programming languages usually
amounts to proving two lemmas:

Lemma (Forward determinism): For every command c and store σ, there exists at
most one store σ′ such that σ ⊢ c ↓ σ′.

Proof. By structural induction on derivations.

Lemma (Backward determinism): For every command c and store σ′, there exists
at most one store σ such that σ ⊢ c ↓ σ′.

Proof. By structural induction on derivations.

It takes a bit of work to prove this, and though it’s pretty tedious, you finally get
your proof of reversibility. Not too bad, right?





The formalization problem

What happens if you decide to change L? You need to change the proofs.

What happens when you decide to design a new and improved reversible
language, L′? You need to prove this all over again!

There is a disconnect in the properties of our object language and meta language:
We want the object language to guarantee reversibility, but the meta language is
completely oblivious to this property.





The formalization problem

More to the point, there is a disconnect between object-level constructs and
meta-level constructs.

Operational semantics describe commands as relations.
Reversible commands are partial injective functions.

Operational semantics are, in a sense, too general. This leads to us having to
prove properties of object languages, in this case reversibility, in an ad hoc,
case-by-case manner.

This suggests the need for a more specialized metalanguage.





RWHILE with procedures



RWHILE with procedures

RWHILE is a simple reversible imperative programming language with dynamic
data, pattern matching, and reversible control structures, introduced by Glück
and Yokoyama in .

More recently, it was extended with support for procedures and procedure calls
and uncalls, including (mutually) recursive procedure systems.

With or without procedures, RWHILE is r-Turing complete.





An example

1: proc infix2pre(t)
2: y ⇐ call pre((t.nil));
3: return y;
4:

5: proc pre2infix(y)
6: (t.nil) ⇐ uncall pre(y);
7: return t;
8:

9: proc pre((t.y))
10: if =? t a then
11: y ⇐ (t.y);
12: else
13: (l.(d.r)) ⇐ t;
14: y ⇐ call pre((r.y));
15: y ⇐ call pre((l.y));
16: y ⇐ (d.y);
17: fi =? hd(y) a;
18: return y;

(* infix exp to Polish notation *)

(* call preorder traversal *)

(* Polish notation to infix exp *)

(* uncall preorder traversal *)

(* recursive preorder traversal *)

(* tree t is leaf? *)

(* add leaf to list y *)

(* decompose node *)

(* traverse right subtree r *)

(* traverse left subtree l *)

(* add label d to list y *)

(* head of list y is leaf? *)





PInj: A reversible metalanguage



The C-word

Unlike the metalanguage of operational semantics, PInj is a metalanguage
which guarantees reversibility – no theorems needed!

PInj is a category, the category of sets and partial injective functions.

However, no categorical background is assumed!

There are no tricks up my sleeve: The meta-language was not designed with
RWHILE (or any other) particular language in mind.





Sets and partial injective functions

In PInj we can, among other things …

• form simple partial injective functions f (x) = . . . , so long as it is
immediately clear that they are injective,

• compose partial injective functions X f−→ Y and Y g−→ Z to form their
composite X g ◦ f−−→ Z, (g ◦ f )(x) = g (f (x)),

• invert a partial injective function X f−→ Y to form its partial inverse

Y f †

−→ X.

In other words, partial injective functions are closed under composition and
inversion.

Inversion and composition interact: (g ◦ f )† = f † ◦ g †.





Sets and partial injective functions

In PInj we can, among other things …

• form the cartesian product X ⊗ Y of sets X and Y, and of partial injective
functions: Given X f−→ Y and X ′ g−→ Y ′, we define a partial injection
X ⊗ X ′ f ⊗g−−→ Y ⊗ Y ′ by

(f ⊗ g)(x, x ′) = (f (x), g(x ′))

• form the tagged union of sets X ⊕ Y and partial injective functions
X f−→ Y and X ′ g−→ Y ′. Elements of X ⊕Y are of the form inl(x) for
x ∈ X, and inr(y) for y ∈ Y, and X ⊕ X ′ f ⊕g−−→ Y ⊕ Y ′ is defined by

(f ⊕ g)(x) =
{

inl(f (x ′)) if x = inl(x ′)

inr(g(x ′)) if x = inr(x ′)

Note that (f ⊗ g)† = f † ⊗ g† and (f ⊕ g)† = f † ⊕ g†.





Sets and partial injective functions

In PInj we can, among other things …

• form the trace X Tr(f )−−−→ Y of a partial injective function X ⊕ U f−→ Y ⊕ U

f

Note that this satisfies Tr(f )† = Tr(f †).
• (We can also construct sets and partial injective functions as fixed points,

though we’re not going to worry about that here.)





Aspects of the semantics



Basic principles of denotational semantics

To produce a denotational semantics for a language, we generally need to

• Construct an object Σ, the semantic domain (here: the set of states).

• For each syntactic class (here: expressions, patterns, predicates, commands,
procedures, and programs), construct a denotation Jt K of each term t of
that syntactic class as a morphism (here: partial injective function).





The semantic domain

To construct the set of states, we first need to consider values.

Values in RWHILE with procedures are binary trees with symbols (over some fixed
but unspecified alphabet) as external nodes. Assume that a set Λ∗ of symbols is
given.

Binary trees V can then be constructed inductively as:

• If s ∈ Λ∗, s ∈ V (base case), and

• if t1, t2 ∈ V then t1 • t2 ∈ V (inductive case).

t1 t2





The semantic domain

The set of states Σ is then constructed as (finitely supported) colists over Λ∗.

In other words, states σ are streams (v1, v2, . . . ) of values such that only finitely
many vi are non-nil.

Intuition: Assign to each variable x (of which there are denumerably many) a
distinct natural number n. A state σ = (v1, v2, . . . ) then specifies precisely the
contents of each variable.

For this reason, we will write xi for the variable corresponding to the i ’th
component of a state.





Expressions

Σ
Je Kexp−−−→ Σ⊗ V

Intuition: An expression takes a state and extracts a value from it, returning also
the original state (for reversibility).

Je Kexp(σ) = (σ, Je Kσexp)
Jxi Kσexp = vi where σ = (v1, v2, . . . )Je1.e2 Kσexp = Je1 Kσexp • Je2 Kσexp

Jhd (e1) Kσexp =

{
v1 if Je1 Kσexp = v1 • v2

↑ otherwise





Patterns

Σ
Jq Kpat−−−→ Σ⊗ V

Intuition: A pattern extracts a value from a state, returning the residual state as a
byproduct (for reversibility).

JxiKpat(σ) = (v1, v2, . . . , vi−1,nil, vi+1, . . . , vi) where σ = (v1, v2, . . . )Jq1.q2Kpat(σ) = (σ′′, v1 • v2) where (σ′, v1) = Jq1Kpat(σ)

(σ′′, v2) = Jq2Kpat(σ
′),

Note that we’re only worrying about right-patterns here. This is because left
patterns are their formal duals, i.e., the corresponding left-pattern for Jq Kpat is
precisely Jq K†pat.





Predicates

Σ
Je Kpred−−−−→ Σ⊕ Σ

Intuition: A predicate directs control flow depending on its truth or falsehood in
a given state.

Je Kpred(σ) =

{
inl(σ) if Je Kσexp ̸= nil
inr(σ) otherwise

That is, a predicate sends control flow to the left if e is true (i.e., evaluates to a
non-nil value) in the given state, and to the right otherwise.





Commands

Σ
Jc Kcmd−−−−→ Σ

Intuition: Commands are state transformations.

Jc1; c2 Kcmd = Jc2 Kcmd ◦ Jc1 KcmdJq1 ⇐ q2 Kcmd = Jq1 K†pat ◦ Jq2 KpatJif e1 then c1 else c2 fi e2Kcmd = Je2K†pred ◦ (Jc1Kcmd ⊕ Jc2Kcmd) ◦ Je1KpredJfrom e1 do c1 loop c2 until e2Kcmd = Tr((Jc2 Kcmd ⊕ idΣ) ◦ Je2Kpred ◦ Jc1Kcmd ◦ Je1K†pred)





Conditionals

[[c2]]

[[e1]] [[e2]]
†

[[c1]]





Loops

[[c2]]

[[e1]]
† [[e2]][[c1]]





Concluding remarks



Concluding remarks

Denotational semantics in PInj

• are intrinsically reversible,

• independent of concrete languages and paradigms, and

• allow the language designer to exploit dualities already present in the
semantics.

Didn’t get to all the details in this talk, so please see paper or ask me if you’re
interested.




	The formalization problem
	RWHILE with procedures
	PInj: A reversible metalanguage
	Aspects of the semantics
	Concluding remarks

