ReVERSIBLE PROGRAMS HAVE REVERSIBLE SEMANTICS

RPLA 2019

Robert Gliick', Robin Kaarsgaardl, Tetsuo Yokoyama2

October 9, 2019
! DIKU, Department of Computer Science, University of Copenhagen, Denmark
2 Department of Software Engineering, Nanzan University, Japan

robin@di.ku.dk
http://www.di.ku.dk/~robin


mailto:robin@di.ku.dk
http://www.di.ku.dk/~robin

REVERSIBLE PROGRAMS HAVE REVERSIBLE SEMANTICS

A CATEGORICAL FOUNDATION FOR §

RUCTURE SIBLE
FLOWCHART LANGUAGES: SOUNDNESS AND ADEQUACY

REVE

o that adopts a physical principle of reality
ernsue. Reversible computing extends the
“mode of computation with the abilty to exeeute i reverse o casily

i . necessity i the context of quantum computing and
. Tegardiessofthe physical motiation, bidrctionl
e ol et e the i

84, 88, 37]) now programming models and
ochniques (e (10, 17,23, and the exhancemnt of sofvre il iy (e, )
Today the semautics of eversibe progtommi

e etevisof MFPS XTI for o ol




OVERVIEW

1. The formalization problem

2. RWHILE with procedures

3. PInj: A reversible metalanguage
4. Aspects of the semantics

5. Concluding remarks



THE FORMALIZATION PROBLEM



THE FORMALIZATION PROBLEM

Suppose that you're in the process of designing a new reversible programming

language, L.

To give L£-programs meaning, you define a simple operational semantics for L.

o by~ tt ok lo o' by~ tt
o F if by then c; else ¢, fi by | o’

How do you show that L is reversible? You prove a theorem.



THE FORMALIZATION PROBLEM

Proving reversibility of (imperative) reversible programming languages usually

amounts to proving two lemmas:

Lemma (Forward determinism): For every command c and store o, there exists at

most one store o' such thato & ¢ | o’.

Proof’ By structural induction on derivations.
%

Lemma (Backward determinism): For every command ¢ and store o', there exists

at most one store o such thato = ¢ | o’.

Proof. By structural induction on derivations.

It takes a bit of work to prove this, and though it’s pretty tedious, you finally get
your proof of reversibility. Not too bad, right?



THE FORMALIZATION PROBLEM

What happens if you decide to change £? You need to change the proofs.

What happens when you decide to design a new and improved reversible

language, L'? You need to prove this all over again!

There is a disconnect in the properties of our object language and meta language:
We want the object language to guarantee reversibility, but the meta language is

completely oblivious to this property.



THE FORMALIZATION PROBLEM

More to the point, there is a disconnect between object-level constructs and

meta-level constructs.

Operational semantics describe commands as relations.

Reversible commands are partial injective functions.

Operational semantics are, in a sense, foo general. This leads to us having to
prove properties of object languages, in this case reversibility, in an ad hoc,

case-by-case manner.

This suggests the need for a more specialized metalanguage.



RWHILE WITH PROCEDURES



RWHILE H PROCEDURES

RWHILE is a simple reversible imperative programming language with dynamic
data, pattern matching, and reversible control structures, introduced by Gliick

and Yokoyama in 2015.

More recently, it was extended with support for procedures and procedure calls

and uncalls, including (mutually) recursive procedure systems.

With or without procedures, RWHILE is r-Turing complete.



AN EXAMPLE

1: proc infiz2pre(t) (* infix exp to Polish notation %)
2: y<=call pre((t.ni)); (* call preorder traversal *)
3: return ¥

4:

5: proc pre2infiz(y) (* Polish notation to infix exp *)
6: (t.nil) <= uncall pre(y); (% uncall preorder traversal )
7: return ¢

8

9: proc pre((t.y)) (* recursive preorder traversal %)
10: if =2 ¢ a then (x tree t is leaf? *)
11: y < (t.y); (* add leaf to list y *)
12: else

13: (L(dr)) <= t; (* decompose node *)
14: y <= call pre((r.y)); (* traverse right subtree r *)
15: y < call pre((Ly)); (* traverse left subtree 1 *)
16: y <= (d.y); (* add label d to list y *)
17: fi =2 hd(y) g (* head of list y is leaf? *)

18: return Y,



PInj: A REVERSIBLE METALANGUAGE




Unlike the metalanguage of operational semantics, PInj is a metalanguage

which guarantees reversibility — no theorems needed!
PInj is a category, the category of sets and partial injective functions.
However, no categorical background is assumed!

There are no tricks up my sleeve: The meta-language was 7ot designed with

RWHILE (or any other) particular language in mind.



AL INJECTIVE FUNCTIONS

In PInj we can, among other things ...

* form simple partial injective functions f(z) = ..., so long as it is

immediately clear that they are injective,

* compose partial injective functions X i> Yand Y% Zto form their
composite X 2% 7 (go f)(z) = g(f(x)),
* invert a partial injective function X i) Y to form its partial inverse

'
v x

In other words, partial injective functions are closed under composition and

inversion.

Inversion and composition interact: (g o f)T = ff o gT.

10



SETS AND PARTIAL INJECTIVE FUNCTIONS

In PInj we can, among other things ...

e form the cartesian product X @ Y of sets X and Y, and of partial injective
functions: Given X 3 Yand X' & Y, we define a partial injection
X0 X' 2% vo v by

(f®@g)(zz") = (f(x), 9(z"))

* form the ragged union of sets X @ Y and partial injective functions
XL Yand X' & Y. Elements of X ® Y are of the form inl(z) for
z€ X, and inr(y) fory € Y, and X X’ 199, y@ Y is defined by

inl(f(z)) ifz=inl(z’)
inr(g(z')) ifz=inr(z’)

(f @ 9)(2) = {

Note that (f ® ¢)' = ft ® ¢' and (f @ 9)T = ft @ 4.

11



SETS AND PARTIAL INJECTIVE FUNCTIONS

In PInj we can, among other things ...

Te(f)

e form the frace X —— Y of a partial injective function X & U —) Yo U

: [ ] :

f

Note that this satisfies Tr(f)" = Tr(fT).

* (We can also construct sets and partial injective functions as fixed points,

though we're not going to worry about that here.)

12



ASPECTS OF THE SEMANTICS




IC PRINCIPLES OF DENOTATIONAL SEMANTICS

To produce a denotational semantics for a language, we generally need to

¢ Construct an object 3, the semantic domain (here: the set of states).

e For each syntactic class (here: expressions, patterns, predicates, commands,
procedures, and programs), construct a denotation [[t] of each term ¢ of

that syntactic class as a morphism (here: partial injective function).

13



THE SEMANTIC DOMAIN

To construct the set of states, we first need to consider values.

Values in RWHILE with procedures are binary trees with symbols (over some fixed
but unspecified alphabet) as external nodes. Assume that a set A* of symbols is
given.

Binary trees V can then be constructed inductively as:

e If 5€ A*, 5 € V (base case), and
o if {1, 1o € V then t; @ t5 € V (inductive case).

14



THE SEMANTIC DOMAIN

The set of states X is then constructed as (finitely supported) colists over A*.

In other words, states o are streams (1, ¥2, . . . ) of values such that only finitely

many v; are non-nil.

Intuition: Assign to each variable = (of which there are denumerably many) a
distinct natural number n. A state 0 = (vy, v2, ... ) then specifies precisely the

contents of each variable.

For this reason, we will write z; for the variable corresponding to the 7’th

component of a state.

15



EXPRESSIONS

5 Ll oy

Intuition: An expression takes a state and extracts a value from it, returning also

the original state (for reversibility).

[elep(0) = (0 [e]&p)

[[l“iﬂgxpzvi where 0 = (v, v, ...)

[er-e21C, = [er 13, @ Te2 12,

ﬂhd(el) exp { " if Hel ]]eXP =l

1 otherwise

16



PATTERNS

[[q]]p“ Tl & oy

Intuition: A pattern extracts a value from a state, returning the residual state as a

byproduct (for reversibility).
[[xi]]pa[(d) = (1)1, @Bgoooyg vi,l,?ﬂ, Vitly-- s ’UZ') where g = ('Ul, PRgoooa )
[[(h'qQ]]pat(o-) = (U//; v e UQ) where (OJ? Ul) = qu]]pat(a)
(O-”a UQ) - [[QQ]]pat(o-/)7

Note that we're only worrying about right-patterns here. This is because left

patterns are their formal duals, i.e., the corresponding left-pattern for [ ]y is

precisely [¢ ﬂ;rm.

uy



PREDICATES

LN

Intuition: A predicate directs control flow depending on its truth or falsechood in

a given state.

inl(o) if [e]g, # nil

inr(0) otherwise

[[eﬂpred(g) =

That is, a predicate sends control flow to the left if e is true (i.e., evaluates to a

non-nil value) in the given state, and to the right otherwise.

18



COMMANDS

[cTema
Yy —3
Intuition: Commands are state transformations.

IICl; C2 ]]cmd - [[02 ]]cmd o ﬂcl ]]cmd
[0 < @2 Jema = [@1 [fac © [ g2 T
[if e1 then c1 else ¢z fi e2]cma = [[ez]]f,red o ([e1]amd @ [e2lema) © [€1]pred

[from e1 do c1 loop co until €2]cma = Tr(([c2 Jema @ ids) 0 [e2]lprea © [€1]cma © [[el]]gred)

19



CONDITIONALS

[c2]

[c1]







CONCLUDING REMARKS




CONCLUDING REMARKS

Denotational semantics in PInj

* are intrinsically reversible,
¢ independent of concrete languages and paradigms, and
e allow the language designer to exploit dualities already present in the

semantics.

Didn’t get to all the details in this talk, so please see paper or ask me if you're

interested.

22



	The formalization problem
	RWHILE with procedures
	PInj: A reversible metalanguage
	Aspects of the semantics
	Concluding remarks

