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Abstract

During the past decade reversible programming languages have been formal-
ized using various established semantics frameworks. However, these seman-
tics fail to effectively specify the distinct properties of reversible languages
at the metalevel, even including the central question of whether the defined
language is reversible. In this paper, we build a metalanguage foundation for
reversible languages from categorical principles, based on the category of sets
and partial injective functions. We exemplify our approach by a step-by-step
development of the full semantics of an r-Turing complete reversible while-
language with recursive procedures. The use of the metalanguage leads to a
formalization of the reversible semantics. A language defined in the meta-
language is guaranteed to have reversibility and inverse semantics. Also,
program inverters for this language are obtained for free. We further discuss
applications and directions for reversible semantics.

1. Introduction

Over the last ten years, reversible programming languages ranging from
imperative to functional and object-oriented languages have been formalized
using established semantics frameworks, such as state transition functions,
structural operational semantics, and recently, denotational semantics (e.g.
[1, 2, 3, 4]). These frameworks, which have been used to provide meaning to
a wide range of advanced language features and computation models (such
as nondeterminism and parallelism), have turned out to be ineffective at
specifying the distinct semantics properties of reversible languages. Even
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questions about the uniqueness of inverse semantics and the inversion of
programs in reversible languages, and in particular the central question of
whether a language is reversible or not, cannot be answered immediately.

In this paper, we build a metalanguage foundation for reversible lan-
guages based on the category PInj of sets and partial injective functions.
The philosophy behind this approach is straightforward: Interpretations of
syntax are composed in ways that preserve their injectivity. More specifically,
interpretations of syntax are composed of sequential composition, Cartesian
product, disjoint union, function inversion, iteration, and recursion. For this,
we make use of the categorical foundation developed elsewhere (e.g. [5, 6, 7];
see also the fully abstract denotational semantics of Janus in [8] based on
partial injective functions). Our approach exploits the fact that reversible
programs have reversible semantics: We regard a program as (composition-
ally) reversible iff each of its meaningful subprograms is partially invertible.
This allows us to provide a clean reversible semantics to a reversible language.

We demonstrate the aforementioned idea by a step-by-step development
of a full formal semantics of the reversible procedural language R-WHILE in-
cluding iteration and recursion. The use of the metalanguage leads to a
formalization of the reversible semantics. Any language defined in the meta-
language is guaranteed to have reversibility and inverse semantics. The re-
versibility of the language follows immediately from its semantics, and it can
be seen from the signatures of semantic functions that the language is clean
and without any hidden tracing. This metalanguage approach is independent
of the specific details of the defined language and can be extended to other
ways of composing semantic functions, provided their injectivity is preserved.
Also, program inverters for this language are obtained for free.

R-WHILE with procedures is a reversible while-language with structured
control-flow operators, and dynamic data structures [3, 4].! The language
is reversibly universal (r-Turing complete), which means that it is computa-
tionally as powerful as any reversible programming language can be. It has
features representative of reversible imperative and functional languages, in-
cluding reversible assignments, pattern matching, and inverse invocation of
recursive procedures.

The metalanguage used here has a distinct property familiar from re-
versible programming: It is not possible to define an irreversible (non-injective)
language semantics. To ensure reversibility, conventional metalanguages re-
quire discipline in the formalization, e.g., when using conventional denota-

LAn online interpreter for R-WHILE with procedures and the example program in this
paper are available at http://tetsuo. jp/ref/RPLA2019.



tional semantics. In the case of operational semantics, which permits the
description of arbitrary relations, it is unclear how to restrict such an infer-
ence system to a purely reversible one without requiring an explicit proof of
reversibility. A future direction of research can be to investigate extensions
of the metalanguage to capture other forms of composition and language fea-
tures, which may include object-oriented features, combinators, and machine
languages.

Overview: Section 2 introduces the elements of the formal semantics,
and Section 3 describes the reversible language R-WHILE with procedures.
In Section 4, the formal semantics of the language is developed step-by-
step. Section 5 demonstrates the extension of the language and equational
reasoning. Section 6 and Section 7 offer related work, concluding remarks,
and directions for future work. We assume that the reader is familiar with the
basic notions of reversible languages (e.g., [2]) and formal semantics (e.g., [9]).

FEztensions: This paper is an extended version of a paper [10] presented
at the workshop on Reversibility in Programming, Languages, and Automata
(RPLA 2019). Aside from a number of corrections and extensions throughout
the paper serving to make exposition more clear (in Section 2, Section 3, and
Section 4), we also explicate how one can extend the syntax and semantics of
a reversible language with a number of useful features (Section 5) and perform
equational reasoning when we use the presented specialized metalanguage £
(Section 4.8).

2. Elements of the Formal Semantics

This section is concerned with some of the details of sets and partial in-
jective functions as they will be used in the following sections (compare, e.g.,
[11, 12, 13]). While the constructions mentioned in this section are extracted
from the study of the category PInj of sets and partial injective functions,
no categorical background is assumed (though a basic understanding of sets,
partial functions, and domain theory is).

2.1. Composition and Inversion

Partial functions are ordinary functions, save for the fact that they may
be undefined on parts of their domain. To indicate that a partial function

X L v is undefined on some zo € X (e.g., in the definition of a piecewise
function), we use symbol 1 and write f(z¢) =1. A partial function is injective
iff whenever f(z) and f(y) are both defined and f(z) = f(y), it is also the

case that x = y. Injectivity is preserved by composition (i.e., if X Iy v and



Y % Z are both partial injective functions so is X LNy ), and each identity
function X 2% X is trivially injective.

Partial injective functions can be inverted in a unique way: for every par-
tial injective function X Iy ¥ there exists a unique partial injective function

Y i X which undoes whatever f does, in the sense that fo ffo f = f,
and, vice versa, ffo fo ft = ff.

Aside from sequential composition, partial injective functions can also be
composed in parallel in two ways. The first is using the Cartesian product

of sets X and Y, which we denote X ® Y. If X L X and Y L Y7 are par-

tial injective functions, we can form a new partial injective function on the

Cartesian product, X @Y LN X'@Y', by (fog)(z,y) = (f(z),9(y)). Note,

however, that we do not have projections (such as X ® Y ™% X given by
m(z,y) = x) available, as these are never injective. We will denote the unit,
up to bijective correspondence, of the Cartesian product (any distinguished
singleton set will do) by 1. For any set X, we shall call the bijection witness-

ing that 1 is the unit of the Cartesian product on the left by X M@ X ,
and on the right by X 25 X @ 1.

Another parallel composition is given on the disjoint union of sets X and
Y, which we denote X &Y. We think of elements of X &Y as being tagged
with either left (inl -) or right (inr -) depending on their set of origin; for
example, if x € X then inlx € X @Y, and if y € Y theninry € X Y.
Up to bijective correspondence, the unit of disjoint union is the empty set (),
which we will also denote as 0. The tagged union of partial injective functions

XL X and v % Y7 is then a partial injective function of tagged unions,

XX I%9, y @ Y’ performing a case analysis on the inputs and tagging
outputs with their origin:

_[inl f(2')  ifz=inla’

(f@g)(x)—{ inr g(z')  ifx=inra
While the Cartesian product lost its projections in the setting of partial
injective functions, the disjoint union retains its usual injections: There are
injections X ™ X @Y and Y % X @Y given by s(z) = inl 2 and
Ko(y) = inr y. Note in particular that since we consider partial injective
functions, these have partial inverses Ii;r (sometimes called quasiprojections)

which remove the tag, but are only defined for elements from the ¢’th part

o
of the union. For example, X &Y =% X is given by «l(inl z) = z and

ki (inr y) =1.
Finally, note the interactions between the Cartesian product and disjoint
union: X ®0 is empty for all sets X, and analogous to the behavior of addition
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and multiplication in a (semi)ring, there is a bijective correspondence (given
by the so-called distributor) between X @ (Y @ Z) and (X ®Y) @ (X ® Z)
for all sets X,Y, Z.

2.2. Fized Points and Iteration

Both sets and partial injective functions are well-behaved when it comes
to recursive definitions. For sets, any recursive definition of a set involving
only disjoint unions, Cartesian products, and already defined sets (including
0 and 1) has a unique least and greatest solution: As is usual in domain
theory, we use uX ... for the least solution (the least fixed point) and v.X . ..
for the greatest solution (the greatest fixed point). For example, the set of
flat lists with entries taken from a set A is given by the least fixed point
pX.1® (A® X).

A useful property of partial functions, as opposed to total ones, is that
the set of all partial functions with specified domain and target forms a di-
rected complete partial order. This has useful consequences for the recursive
description of partial injective functions. In particular, any continuous func-
tion PInj(X,Y) — PInj(X,Y) has a least fixed point (where PInj(X,Y)
denotes the set of partial injective functions between sets X and Y). By its
definition, the least fix point must be a partial injective function X — Y
(i.e., an element of PInj(X,Y)).

For the continuity requirement, we note that all previously presented
operations on partial injective functions are continuous (i.e., sequential com-
position, partial inversion, parallel composition using Cartesian products and
disjoint unions, as well as the trace discussed below), so any function involv-
ing only these operations is guaranteed to be continuous. To this end, it is
shown in [6] that continuity in PInj amounts to preserving joins of partial
functions (i.e., unions of function graphs), and continuity of sequential com-
position, partial inversion, and traces is shown. For parallel composition us-
ing Cartesian products and disjoint sums, the join characterisation of continu-
ity means that this reduces to the well-known properties of set-theoretic union
of ( XUX)®Y = (XeY)U(X'®Y)and (XUX )@Y = (XaY)U(X'aY).

Finally, partial injective functions can also be tail-recursively described

using the trace operator. Intuitively, the trace of a partial injective function

XU Ly @ U is a function X M Y given as follows: If f(inl ) =inly

for some y, this y is returned directly. Otherwise, if f is defined at inl z, it
must be the case that f(inl ) = inr u for some u. If this is the case, this inr u
is fed back into f, and the feedback loop continues until it either terminates
to some inl y, which is then returned, or does not, in which case the trace is
undefined at x.



This trace operator may be described as a function PInj(U & X,U &
Y) I PInj(X,Y). It is most easily defined using a tail-recursively described
pretrace PInj(U & X, U @& Y') prefrace, PInj(U @ X,Y) given as follows:

pretrace(f)(z) = { 5retmce<f><inl v %; ~ il v

With this, it is defined simply as Tr(f)(z) = pretrace(f)(inr ).
The data flow of Tr(f) is typically illustrated using the diagram

z [ ] :
f

in which the flow is from left to right and the feedback loop represents the
repeated application of f to outputs of type U.

While less general than the fixed point (which can be used to describe
arbitrary recursion), this tail recursion operator is very well behaved with
respect to inversion, as it satisfies

Te(f7) = Te(f)!

for all partial injective functions U & X ENNs @Y. (Formally, the trace

operator can also be defined as a fixed point using the trace formula, see
[14].)

2.3. Summary of the Metalanguage

Collecting the injective constructs for the formal semantics introduced
above, we can specify a clean reversible metalanguage £ for describing objects
of Plnj:

fo=alw|idx |poflfeflfoflfoflT(f)]fe.

For any expression in L, the least fixed point exists. The formal argu-
ment of the least fixed point ¢ is a partial injective function. L is closed
under inversion, and the inverse semantics of each expression is unique and
immediate. Any language described by the metalanguage is (composition-
ally) reversible. L is expressive enough to fully formalize the semantics of
reversibly-universal languages, as demonstrated below for R-WHILE.

An atomic function a can be any auxiliary partial injective function. In
what follows, we use the following four injective helper functions: i) X rx,

X ® 1, defined above, ii) 1 <22 V defined by const,(x) = v where * is
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proc f(q) c;return g¢;
n= x=e|qg<q|cc|if ethencelse cfie | from e do ¢ loop c until e

| s | (q.q) | call f(q) | uncall f(q)
| 5] (ee) | hd(e) [tl(e) | =7 e e

QQQ’BS
I

Figure 1: Syntax of the reversible language R-WHILE with procedures.

the unique element in 1 and v is any value, and iii) (X @ V) ® Z =%
X ® (Y ®Z) defined by assocrg((z,y),2) = (z, (y, 2)). By abuse of notation,
X 5 X8 (Xo® (- (Xi®- - (X189 X,) - - - ) returns the nested injection:

inr(--- (inr(inl 2))---) f1<i<n
—1
rile) = inr(- -« (inr )---) ifi=n
—_———

n—1

3. R-WHILE with Reversible Recursion and Iteration

We describe the semantics of the reversible language R-WHILE with proce-
dures informally, and illustrate it with a recursive program that translates in-
fix expressions to Polish notation, a classic translation that is reversible. The
data domain of the language is tree-structured data (lists known from Lisp
and many modern languages). Readers familiar with reversible programming
can skip to Example 1 below and return to the informal description later.

The syntax of the language [4] is shown in Fig. 1. A program m is a se-
quence of procedures p- - - p, where the first procedure is the main procedure.
A procedure p has a name f, an argument pattern ¢, a command c as its
body, and a return pattern ¢q. The input to and output from a procedure is
through the argument and return patterns, respectively. Each procedure has
a single argument and a single return value. Thus, it is convenient to com-
pose and decompose input and output values by patterns. Figure 2 shows
example procedures.

A command c is either a reversible assignment x = e, a reversible replace-
ment q < q, a reversible conditional if...fi, or a reversible loop from...until.

The variable z in a reversible assignment x = e must not occur in ex-
pression e, which calculates a value (e.g., * = z is not well formed). The
assignment sets x to the value of e if the value of x is nil and sets = to nil



if the values of x and e are equal; otherwise, the assignment is undefined.
In other words, x is exclusively set or reset depending on its value. The
assignment is only defined for these two cases. This definition ensures the re-
versibility of assignments. The hat ™ of assignment operator = is reminiscent
of an exclusive-or operator. For example, if z is nil then z = y sets z to the
value of y. If z and y are equal then x = y resets x to nil. In the first case,
the value of y is duplicated; in the second case, the value of x is nil-cleared
using the value of y. The variables that occur in the expression on the right
side, here y, are never changed, only z is updated reversibly [15].

A reversible replacement ¢; <= ¢o arranges values according to patterns
¢1 and go. For example, (y.x) <= (z.y) swaps the values of variables z and y.
In contrast to an assignment, no value can be duplicated by a reversible
replacement. Before the value constructed by ¢, on the right side is matched
with ¢; on the left side, all variables in ¢y are nil-cleared. This means that
the same variables may occur on both sides of a replacement (unlike an
assignment).

Patterns play a central role in the construction and deconstruction of
values, and are used in both ways in the language. For example, replacement
(t.y) < y decomposes the value of y on the right side by the pattern (¢.y)
on the left side into head ¢ and tail y provided the original value is indeed
a pair and the value of ¢ is initially nil. Another example is y <= (t.y) that
pairs the values of ¢ and y by the pattern (t.y) on the right side, nil-clears ¢
and y, and binds the new pair to y on the left side. It is easy to see that
sequence y < (t.y); (t.y) < y restores the original values of ¢ and y.

A pattern q is a variable z, a symbol s, a pair of patterns (q.q), or an
invocation or inverse invocation of a procedure by call f(g) or uncall f(q).
All patterns are linear (no variable occurs more than once in a pattern). The
semantics of a procedure uncall is the inverse semantics of a procedure call.
Procedures can only be invoked in patterns, not in expressions. This will be
formalized later. Examples can be seen in Fig. 2.

The conditional if...fi and the loop from...until are two control structures
which are also found in other reversible flowchart languages (e.g., [2]), and
they work as follows: Compared to conventional control structures, they are
equipped with assertions. The exit of a conditional, fi e, is an assertion that
must evaluate to true after the then-branch and to false after the else-branch.
The entry of a loop, from e, is an assertion that must evaluate to true before
entering the loop and to false after each iteration. The control structures are
undefined if their assertions do not evaluate as required.

Expressions are conventional. An expression e is either a variable z,
a symbol s, or the application of an operator, i.e., constructor cons (-.-),
selectors head hd and tail tl, or equality test =7. An expression defines a



1: proc in2prefiz(t) (* infix exp to Polish notation *)
2: y<call pre((t.nid)); (* call preorder traversal )
3 return y;

4:

5: proc pre2infiz(y) (* Polish notation to infix exp *)

6: (t.nil) < uncall pre(y); (* uncall preorder traversal — *)

7 return t;

8:

9: proc pre((t.y)) (* recursive preorder traversal *)
10: if =7 t 0 then (* tree t is a leaf? )
11: y < (ty) (* add leaf to list y )
12:  else
13: (I.(d.r)) < t; (* decompose tree ¢ )
14: y < call pre((r.y)); (* traverse right subtree r )
15: y < call pre((l.y)); (* traverse left subtree [ )
16: y < (d.y) (* add label d to list y )
17: fi =7 hd(y) 0; (* head of list y is a leaf? )
18: return y;

Figure 2: Translation between infix expressions and Polish notation in R-WHILE.

partial function that is not necessarily injective (e.g., hd, tl are not injective).
Other operators can easily be added to expressions.

Variables in a program are denoted by small letters, such as [, d, r, and
symbols are underlined, such as nil, 0, 1.

Example 1. The translation of infix expressions into Polish notation, and
vice versa, has many practical applications. Because this function is injec-
tive, it can be programmed cleanly in a reversible language and run in both
directions.

In R-WHILE infix expressions can be represented by full binary trees

tree = 0| (tree.(L.tree)) ,

where symbols 0 and 1 stand for an operand (leaf) and a binary operator
(inner label) in an expression, respectively. To keep it simple, we will only use
these two symbols in expressions. The corresponding expressions in Polish
notation can be represented by proper lists

list == mil| (0.list) | (1.lst) ,

where nil stands for the empty list.



Figure 2 shows the recursive procedure pre that reversibly translates
an infix expression into a prefix expression (Polish notation) by a preorder
traversal of the full binary tree t. Procedure pre is called and uncalled in the
two procedures n2prefir and pre2infiz to translate to Polish notation, and
vice versa. For example, the infix expression

t=((0.(1.0)).(1.0))

translates to Polish notation

In in2prefiz the translation is invoked by a call to pre (line 2)
y < call pre((t.nil)) ,

where the argument of the call is a pair (t.nil) of ¢t and the empty list nil,
and the result is matched with trivial pattern y, which binds it to y.
In pre2infiz the inverse translation of pre is invoked by an uncall of pre
(line 6)
(t.nil) <= uncall pre(y) ,

where y is the argument of the uncall and ¢ is picked from the resulting pair.
Given y, uncall pre computes the infix expression . The uncall invokes the
inverse computation of the recursive traversal implemented by pre.

The body of pre is a reversible conditional if...fi (lines 10-17) with the
entry test (=7 ¢ 0) and the exit assertion (=7 hd(y) 0). If t is a leaf 0 then
t is added to list y by y < (t.y) (line 11). Otherwise, in the else-branch, pre
calls itself recursively on the right and left subtrees r and [ with the current
list y (lines 14-15). The two subtrees and the label d are selected from ¢ by
(I.(d.r)) <= t. List y is built from right to left, so d is added to y after both
subtrees are translated (line 16). The exit assertion (=7 hd(y) 0) is always
true after the then-branch and always false after the else-branch provided ¢
is a correct infix expression.

The arity of all procedures is one, so it is convenient to decompose the
argument value by pattern (t.y) already in the head of pre (line 9). Due to
the reversibility of the language, pre performs a deterministic traversal in
both directions when invoked by call and uncall (lines 2, 6). Inverting the
traversal of binary trees, not only of full binary trees, is a classic programming
problem for which related reversible solutions were given [4]. The reversible
semantics that follows in the next section underpins all these solutions.
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4. An Intrinsically Reversible Semantics

In this section, we illustrate the principle of reversible semantics by con-
structing a denotational semantics for R-WHILE with procedures using sets
and partial injective functions. This is done first by constructing the do-
mains of computation, and then constructing an interpretation of each syn-
tactic construct, proceeding by syntactic category. While this results in a
semantics for R-WHILE with procedures, we stress rather the use of abstract
concepts (e.g., Cartesian products, disjoint unions, traces, and fixed points)
to construct these semantics in reversible programming languages in general,
rather than the concrete realization of R-WHILE with procedures.

In the following, we use standard notations of denotational semantics [9]
including brackets for semantic functions [-], mapping syntactic constructs
to semantic ones. Note, in particular, the use of semantic functions param-
eterized by a state or program context — see, e.g., patterns in Section 4.3).
Such an interpretation should not be regarded as a single function, but rather
as a family of functions indexed by the appropriate parameter (e.g., a state
or program context).

4.1. States and Values

We begin by constructing the appropriate domains of computation for
values and states. To do this, we assume that we are given an alphabet A
of semantic representations of symbols, elements of which we denote using
an overline, e.g., 0, nil, etc. Note, in particular, the distinction between
semantic symbols (e.g., 0, nil) and their syntactic representations (e.g., 0,
nil). As is usual, we will assume that these two sets are distinct but in
bijective correspondence.

The set of values V is then constructed as the set of binary trees with
elements from A at the leaves. More formally, this set can be constructed
by the least fixed point of sets V= uX.A & (X ® X). If t; and ¢, are such
binary trees, we will use the notation t; ety (read: “t; cons t5”) to mean the
binary tree constructed from ¢; and ts, i.e.,

t to

A state associates each variable with a value. The set of states ¥ can be
constructed as colists of values (i.e., lists of infinite length), that is, ¥ =
VoV®--- (explicitly, this is constructed as the greatest fixed point v.X.I &
(V ® X) where I is identity). Owing to this intuition, we will write states
as infinite vectors of values, e.g., (v1,vs,...). Note that colists arising from
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computational states will all be finitely supported, i.e., they will only contain
finitely many non-nil values. By associating each variable in the language
(of which there are countably many) with a distinct index, a state is then
precisely a description of the contents of all variables. In keeping with this
principle, we shall write variables as x1, x5, 3, etc. rather than (as is usual)
as x,v, 2, etc.

4.2. FExpressions

In irreversible languages, expressions are usually interpreted as partial
functions of the signature ¥ — V. Because multiple states result in the same
value, the function is not injective and cannot be an atomic function a in
the metalanguage L. Instead, expressions are interpreted as partial injective
functions with the signature:

YoviIhvgv

Regardless of their concrete form, interpretations of expressions are defined
as
(0,8er]s) if v = nil
Eler](o,v) = { (o, mil) it v = &'er], # mil

T otherwise

where £'[e], € V, given below, is understood as the value of e in the state
o. Precisely, a family of the infinite number of the semantic functions £'[]
is indexed by the subscript ¢. When v in E[e;](o,v) is nil, the value of e;
in ¢ is obtained. When v is equal to the value of e; in o, nil is obtained.
In both cases, o is left unchanged. Otherwise, the meaning is undefined. In
other words, when a state o is fixed, £[e](o,v) is only ever defined on two
choices of v, namely v = nil and v = £[e;],. In these two cases, it sends
(o, nil) to (0,&'[e1]») and vice versa; thus, it is injective. Another way to
say this is that the semantics function defines a reversible update [15] of the
value argument with the state o kept unchanged, which also implies that it
is self-inverse. This is the general principle hidden here.
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Concretely, £’ is defined as follows, depending on the form of e:

'z = vi where o = (v1,v9,...,0;,...)
5/[[5_1]]0 =57
E'l(er.e2)]s = E'ler]s @ E'[e2]

' _Jou it €e]s =vi 0wy
E'[hd(e1)]s = { 1 otherwise

, v i Ee], =vi 0wy
&tlen)]s = { 1 otherwise
nil @ nil if £'Je1]s = E'[ea]o
nil otherwise

ET=7 e1 es], = {

As such, the meaning of a variable in a state is given by its contents, and
the meaning of a symbol is given by its direct representation in the alphabet
A. The meaning of the cons of expressions is given by the cons of their
meanings, while the head (resp., tail) of an expression takes the head (resp.
tail) of its meaning, diverging if not of this form. The meaning of equality
check =7 returns a distinct value depending on e; and es; having the same
value. The definition uses the convention that nil is considered to be false,
and any other value to be true.

It is obvious that more operators can be added to this list. Note that an
element v € V is uniquely associated with a (necessarily injective) function
1 — V, which maps the unique element of 1 to v. This justifies the fact
that the interpretation of an expression may diverge (as is the case for, e.g.,
&'Thd(e1)]o).

The use of a non-injective function in the definition of an injective function
is often found in the context of reversible computation. Above, E[e], a
reversible update defined using non-injective £'[e], is injective for any e.
Because E[e] is not defined exclusively in terms of the metalanguage, we
regard it as defining an atomic function a of L.

4.3. Patterns

Since patterns may include procedure invocation, the meaning of a pat-
tern depends on the program context ¢ in which it is interpreted. The pro-
gram context ¢ is the disjoint union of the meaning of all procedures f; in
the program: ¢ = f1 @ (fo ® (- (fu—1 ® fn)) ). Program contexts are
constructed at the level of programs as we shall see in Section 4.7. Patterns
in a program context are all interpreted as partial injective functions with

the signature

Qlale
%

by YRV .

13



In particular, note that this signature allows patterns to alter the state. In-
deed, patterns may have side effects (here, in the form of altering the store):
They should be regarded as a means to prepare a given value in a state, in

such a way that may alter the state it began with. To more easily define the

. . .. . . . extract;
interpretation of patterns, we use injective helper functions: One is X .

Y ®V given by extract;(vy, ..., 01,0, ...) = ((v1,...,vi 1, nil,...),v;) (ex-
tracting the i’th value from the state) and V@V —= V given by cons(v;, vy) =
v, @ v3. The interpretation of patterns is then defined as follows, depending
on the form of ¢:

Olx;]s = extract,
Q[s]y = (ids ® consts) o ps
Q[call fi(q1)]s = (ids ® (k] 0 ¢ o K;)) 0 Q1]
Qluncall f;(q1)]s = (ids ® (x] 0 ¢ 0 K;)) 0 Qo]
Ol(q1-92)] ¢ = (ids ® cons) o assocrg o (Qga]s ® idy) 0 Q1]

The meaning of a variable, as a pattern, is to simultaneously extract its
contents and clear it, as handled by the eztract; function. The meaning of
a symbol is given by the bijection witnessing on the right ps, which yields
a new state and the unique element *, and then the consts function, which
takes the latter x and yields the value s. A procedure call call f;(q1) is
interpreted as passing the value of ¢; to the i’th component of the program
context ¢ and extracting from the ¢’th component afterwards, which, as we
will see in Section 4.8, corresponds precisely to invoking the ¢’th procedure.
Uncall to a procedure is handled analogously, but using the inverse to the
program context ¢! instead. Finally, the meaning of a cons pattern (q;.¢2) is
as a kind of sequential composition. First, the interpretation of ¢y results in
a new state o’ and value vy. Then, the interpretation of ¢; results in this new
state ¢’ with vy kept unchanged by idy, yielding a final state o” and value v;.
The injective helper function assocrg defined in Section 2.3 rearranges the
nested pair ((¢”,v1),v2) to (0", (v1,v2)). The two values v; and vy are then
consed together using the injective helper function cons, finally resulting in
the state ¢’ and prepared value v; ® v5. Recall that no variable occurs more
than once in a pattern. Hence, it does not matter whether a cons pattern
(¢1-g2) is interpreted from left to right, or vice versa.

Alternatively, uncall can be defined using the inverted procedures instead
of the inverse to the program context, ¢, provided the inverted procedures
are in ¢. We will see how to add the inverse procedures to ¢ in Section 4.8.
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4.4. Predicates

The predicate interpretation provides a different way of interpreting ex-
pressions that are to be used to determine branching of control flow. They
are interpreted as partial injective functions with the signature

UG S

We use the convention that nil is false and the other values are true. The
predicate interpretation of an expression e is defined as follows:

[inlo if Eer]s # nil
Tle(o) = { inro if &'e1]), = nil

As such, the predicate interpretation of e; sends control flow to the first
component if e; is considered false in the given state, and to the second com-
ponent if it is considered true. As we will see in Section 4.5, this style makes
for a straightforward interpretation of conditional execution of commands
(see also [5, 16]).

4.5. Commands
Commands in R-WHILE with procedures are interpreted as invertible state

transformations, i.e., as partial injective functions with signature

Clels

by 2.

The interpretation of commands is defined as follows, depending on the syn-
tactic form of c:

Cler; e2lg = Clea]p o Clea]y
Clzi = erly = (Qlai]ly) 0 Eer] o QLill
Clar < g2]o = (Qlarlly)t o Qlaals
C[lif ey then ¢ else ¢y fi ea]ly = Te2] o (Clei]y @ Cllea]ls) o Tlea]

C[from e; do ¢ loop ¢y until ea]y = Tr ((C[[CQH¢ @ idy) o Tlez] o Cle1]y o T[[el]]T>

Note, in particular, the use of inverses to patterns and predicates in the
definition above. The inverse to a predicate corresponds to its correspond-
ing assertion, whereas the inverse to a pattern performs state preparation
consuming (part of) a value (rather than, in the forward direction, value
preparation consuming part of a state).

Pattern inverses are illustrated in both reversible assignments and pat-
tern matching, each consisting of a value preparation (indeed, the expression
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interpretation can be seen as side-effect free value preparation), using the
interpretation of patterns, followed by a state preparation using the inverse.
Similarly, the interpretation of conditionals, which may be illustrated using

the string diagram

— Tled] Tle2]" —

where the upper C[cz]s and the lower C[c;] s correspond to the meaning of
else and then branches, respectively, and loops, illustrated with the diagram

G

relies on predicate inverses: In both cases, they serve as conditional join
points, corresponding to an assertion that ey (respectively eq) is expected to
be true when coming from the then branch of the conditional (respectively
from the outside of the loop), and false when coming from the else branch
(respectively from the inside of the loop).

4.6. Procedures

Since for the sake of simplicity R-WHILE with procedures only uses local
state, procedure definitions are interpreted (in a program context) as partial
injective value transformations, i.e., partial injective functions of the form

y PVl

To define the interpretation of procedures, we use an injective helper function
V5 Y@V given by

{(v) =(7,v) ,
where ¢ = (nil,nil,...) is the state in which all variables are cleared (i.e.,
contain nil). This canonical state is the initial computation state in which

all procedures are executed. A procedure definition in the program context
¢ is interpreted as

Plproc f(q1) cisreturn ga]y = &' 0 Qga]ly 0 Cleals 0 (Qanlg) 0 € -

This definition should be read as follows: In the canonical state o, the
state described by the inverse interpretation of the input pattern ¢ is first
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prepared. Then, the body of the procedure is executed, resulting in a new
state which is then used to prepare a value as specified by interpretation
of the output pattern ¢o. At this point, the system must again be in the
canonical state o, which, if this is the case, can then be discarded, leaving
only the output value.

4.7. Programs

Finally, at the level of programs, these are interpreted as the meaning
of their topmost defined procedure, and, as such, are interpreted as partial
injective functions of the signature

\Y V.

Since procedures may be defined to invoke themselves as well as other pro-
cedures, we need to wrap them in a fixed point, passing the appropriate
program context ¢ to each procedure interpretation. This yields the inter-
pretation

Mlp1---pa] = /gJ{ o (N¢~,P[[p1]]¢> - P[[pn]]¢) R -

Note the inner interpretation of procedures p; - - - p,, as a disjoint union P[p; ],®
-+ @ P[pn]ls: This gives one large partial injective function, which behaves
just the partial injective functions P[p;], when inputs are injected into the
i’th component, save for the fact that outputs (if any) are also placed in the
7’th component. This explains the need for injections x; and quasiprojections
%! in the definition of procedure calls in Section 4.3.

The interpretations £'[-] and T[-] are atomic functions in the meta-
language £. The interpretation (M[-],P[-]s, and C[-]4) maps syntax to
injective (value, stores, ...) transformations (on stores, values). The injec-
tive (value, store, ...) transformations can be expressed in L.

4.8. Applications of the Semantics

In conventional programming languages, programs are not guaranteed
to be injective, program inversion usually needs a global program analysis,
and inverse interpretation requires extra computation overhead. However,
owing to the formalization, programs in object languages formalized in £ are
always injective, program inversion can be obtained by a recursive descendent
transformation, and inverse interpretation often has no extra overhead. The
intrinsic properties of the metalanguage are a great help in deriving rules for
program inversion. For any command c, the inverse semantics (C[c]4)" can
be a composition of the semantics of its components and traces, which can
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I[x=e|l=xz=e
Mg <= epl=e<=a
Iler; o] = Ies]; I[ed]
Z[if ey then ¢; else ¢ fi es] = if ey then Z[eq] else Z[es] fi e
Z[from e; do ¢; loop ¢ until e5] = from ey do Z[c;] loop Z[e,] until e;

T, [proc fi(q1) ex;return gs;] = proc 1"*(g2) RIZ[e]]; return g;

Im[[pl e pn]] = Ip[[pl]] T Ipﬂpnﬂ

Figure 3: A command inverter Z, a procedure inverter Z,, and a program inverter Z,, for
R-WHILE with procedures. R renames each called /uncalled procedure f; to its inverse f/™"
without changing its meaning.

be mechanically obtained by properties of PInj [5]. For example, we have
for a reversible replacement

(Clar < g2lo)" = (Qlar]ls)T 0 Qlells) = (Qlgale)T © Qlanls

and hence we obtain that the inverse semantics of replacement is

Cla = Q2H¢)T =Clg2 = ¢i]s -

The right-hand sides of the semantic function of commands are mostly sym-
metric, and their inversion rules are obtained in a similar way (Fig. 3). The
only inversion rule that requires some work to derive is the one for loops,
which relies on the dinaturality law (see [17]) of traces, Tr((id ® g) o f) =
Tr(f o (id @ g)), or graphically

A similar asymmetry appears in the operational semantics of Janus [1], in
which the inference rule for the loop can be either right or left recursive.

In the semantic function of patterns, the inverse semantics ¢ of the pro-
gram context defines the meaning of a procedure uncall. The inverse se-
mantics of procedures is equal to the semantics of inverted procedures. This
leads to an alternative formalization of the same meaning. First, the inverted
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procedures are added to the program context in addition to the original pro-
cedures:

po. Plfils @ - @ Plfale ® (PLAlS) @ - @ (PLfals)" -

Given such an extended program context ¢, the access to the inverse seman-
tics k! o ¢! o k; in the pattern execution Quncall fi(q1)]s(c) (Section 4.3)
can be replaced by KLH 0 @ 0 Ky, 1.€., accessing the n + ¢’th function.

Program Equivalences. Another application of the semantics, perhaps more
familiar to readers with a background in classical programming languages, is
for deriving semantic equivalences of program fragments. One such equiva-
lence is the equivalence of the replacement commands

¢ <= call fi(gr) = uncall fi(2) =@

for all patterns ¢;,¢q, and any procedure f;, as it holds for any program
context ¢ that

Clgz < call fi(q1)]s = (Qlgalls)" o Q[call fi(q1)]s
= (Qlallo)" 0 (ids @ (k] 0 ¢ 0 ) 0 Qi
= (Qfg2lp)t o (ids @ (k] 0 ¢ 0 k:)) T 0 Q]
= (Qlazl)" 0 (ids @ (k] 0 ¢' 0 :))T 0 Q]
= ((ids @ (k] 0 ¢ 0 k1)) 0 Q] ) 0 Qs
= (Q[uncall fi(g2)]p)" o Q]
= Cfluncall fi(g2) < ¢1]s -

Similarly, we have the equivalence of the replacement commands

¢ < uncall fi(q1) = call fi(g2) = q1 -

By applying these equivalences, we see in action the familiar idea that un-
calling nested procedure calls happens in reverse procedure call order, .e.,

¢ <= call g(call f(q1))
uncall g(q2) <= call f(q1)
uncall f(uncall g(¢2)) < ¢1 -

and we obtain various other equivalences for replacements, such as

q2 < uncall g(call f(q1))
call g(q2) < call f(q1)
uncall f(call g(q2)) < ¢1 -
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It is easy to see the general principle that calls correspond to uncalls when
they change sides in a replacement and that the order of nested calls and
uncalls is reversed. This shows that the semantics is useful for deriving new
equivalences that are not known in irreversible programming languages. Even
further, since R-WHILE is a relatively simple first-order language, given a suit-
able operational semantics, we expect soundness, computational adequacy,
and full abstraction to all be provable (see analogous results in [5, 8]). If this
does turn out to be the case, the denotational semantics could also be used
to derive contextual equivalences.

5. Extensions to R-WHILE and Their Semantics

In this section, we consider some syntactic extensions to R-WHILE, and
show how to give semantics to these using the presented metalanguage. While
they are presented for R-WHILE, it should be stressed that these are general
reversible language constructs, and ought to fit the vast majority of impera-
tive reversible programming languages.

5.1. Skip, Simple Loops, and Conditional Execution

Arguably the simplest extension to R-WHILE we can consider is the skip
command, which does absolutely nothing—it behaves as the identity. Intro-
ducing this requires extending the syntax of commands:

c u= ---|skip .

Though it may not be obvious, skip can be considered an alias for s <= s for
any choice of symbol s. We then have

Clskip]s = C[s < 5] = (Q[s]s)" o Qlls]s

and to support our claim, it suffices to show that the last term is equal to
the identity:

((idg ® consts) o ps)' o (ids ® consts) o ps
pL o (idl, ® constl) o (idy ® consts) o ps
= plo((dL oidy) ® (constl o consts)) o ps
= phops
= idy .

Since both consts and idy are total, it follows that (Q[s],)! o Q[s]s = ids,
and hence C[skip], = idy, as expected.
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Using skip as the empty command of R-WHILE allows us to derive some
simpler versions of the flow control constructs presented in the previous sec-
tions. For example, the one-armed conditional (similar to control in reversible
circuit logic) can now be expressed as syntactic sugar for the conditional,

if ethen cfie/ = if e then c else skip fi ¢ ,
and the simpler while-loop [3, 5] can be seen as syntactic sugar for the loop,
from e loop c until ¢ = from e do skip loop ¢ until €' .

The abort command cannot even “do nothing” such as the skip command,
it always fails to reach a next state. Adding such a construct to R-WHILE
requires extending the syntax of commands:

cu=--- | abort .

The command can be considered an alias for an impossible match s < s’
where s # s (e.g., let abort be an alias for 0 < 1). Hence, we have the
interpretation C[abort],(c) =7 for any store o, as expected.

5.2. Multiconditionals

Another simple extension to R-WHILE is the introduction of reversible
multiconditionals or case-constructs: Where an ordinary (i.e., binary) re-
versible conditional if e; then ¢y else ¢y fi €] has two branches and two
predicates to distinguish them, an n-armed reversible multiconditional has
n branches and 2n predicates to distinguish them, extending the syntax of
commands:

cu=---|casee;:cri€]; €, Cpy €l €5aC .

With this syntax in place, the interpretation of an n-armed reversible
multiconditional can be specified by extending the semantics function for
commands using the recursive definition

Clcase €1 :c1: €5+ 5 en iyt €, esac]y, =
Tleilt o (Clei]ly ®Clcase e : et €hy; -+ ep ey el esac]y) o Tlea] ifn>1
Clabort], fne0.

The reader may note that multiconditionals have the same semantics as sim-
ply nested conditionals

if €1 then c; else (if ey then ¢y else (- - - (if e, then ¢, else abort fie),) ) fieh) fie] .
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That the semantics function and the interpretation of the nested condi-
tionals are equivalent can be seen by the following derivation. When n > 1
we have the derivation

Clcase ey : ¢y 1 €5 -+ 5 en ¢y : €], €sac]y
= C[if ey then ¢; else (if e then ¢y else (- -
(if e, then ¢, else abort fi e])---) fi €)) fi |]s
= T[e\] o (Clei]y @ C[lif ey then ¢y else (- - -
(if e, then ¢, else abort fi e)) ) fi €5],) o T[ei]
=T[e\] o (Clei]y ©Cllcase e i co:€y; -+ 5 en iyt €l esac]y) o Te]

and when n = 0 multiconditionals behave as abort.

Multiconditionals follow the symmetric first match policy introduced in
the reversible functional programming language RFUN [18]. We test ey, e, ..., €,
in sequence until we find the firstly satisfied expression e;. Then, the i’'th
branch is selected and ¢; is executed. The computation continues if assertion
e; holds and all previous assertions €, €, ..., e;_; do not hold.

Under this assumption, the default branch like in the switch statements
in C can be realized by making both e, and e/, have a non-nil value, e.g.,
e, = €, = (nil.nil), which is interpreted as true. These non-nil expressions
can be hidden by syntactic sugar:

case €1 :¢p i€ €n 1 Cpoq €l elsec, esac =

case €1 :Cr i €] €1 Cuot €y q; (nil.mil) : ¢, : (nil.nil) esac

In particular, this new case command with a single branch is just interpreted
as an if conditional:

case e1 : ¢ : €] else ¢ esac = if e; then ¢ else ¢, fi €] .

The correctness of those equivalences can be checked by simple derivations
using the presented metalanguage.

5.3. Rewriting

A reversible rewrite construct turns out to be very useful for implementing
rewriting systems [19]. First, we illustrate the construct with an iterative
translation of infix expressions into reverse Polish notation, a representation
popular in stack-oriented programming languages. Then, we formalize the
rewrite extension.
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*

iter.postorder traversal *

init stack s to tree ¢
list y empty at entry?
rewrite s and y

stack top is leaf

proc post(t)
s <= (t.nil);
from =7 y nil loop
rewrite (s.y) by
((0-s) y) = (s (0.y));
((((Lr))-5)-y) = ((r(I.s))-(Ly))

*

*

*

*

*
*

*

)
)
)
)
)
)
)
)

P N i T N N N R
*

O 00 N O O W N -

* stack top is inner node *

etirwer * end rewrite *

until =7 s nil; * stack s empty at exit? *
return y;

Figure 4: Translation between infix expressions and reverse Polish notation using rewriting.

Example 2. The procedure in Fig. 4 translates an infix expression ¢ to
reverse Polish notation (RPN) y by iteratively rewriting a stack of trees s
and adding leaves and labels to y (lines 3-8). Stack s is initialized to ¢ (line 2).
The representation of ¢ is the same as in Example 1. The reversible iteration
is implemented by a while-loop (see Section 5.1). Initially, y is empty; the
loop terminates when s is empty. The body of the loop consists of a rewrite
statement rewrite...etirwer (lines 4-7) that tests the value of (s.y) against two
patterns and rewrites it once. If a leaf is on top of the stack as required
by (0.s) in the first pattern (line 5) then 0 is popped from the stack and
consed onto y. Otherwise, if an inner node is on top of the stack as required
by ({.(1.r)) in the second pattern (line 6), the subtrees [ and r are pushed
onto the stack and label 1 is consed onto y. The two patterns on the left
side are disjoint as are the two patterns on the right side, which make the
rewrite statement reversible. Hence, the procedure is reversible, which means
uncalling post translates expressions written in RPN back to infix notation.

Extending R-WHILE with such a construct requires extending the syntax
of commands:

cu=--- | rewrite ¢ by ¢1 = q1; - -+ ; 4, = ¢, etirwer .

The intended semantics of a rewrite block is as follows: The pattern ¢ is
tested against the patterns qq, ..., g, until a match is found — the patterns
qi,---,qn are assumed to be disjoint such that ¢ can match at most one of
these, as are ¢,...,q, to ensure reversibility. Once a match ¢; is found,
q is rewritten by the pattern on the right-hand side, ¢/: Knowing that ¢;
and ¢ match, performing this rewriting amounts to performing the command
G < ¢4 < g

Recall that the reversible replacement ¢, < ¢ acts as an assertion with
side effects: If the two patterns ¢; and g match, the replacement is per-
formed, and if they do not, the replacement ¢; < ¢ is undefined. As such,
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determining whether two patterns ¢; and ¢ match in a given state (with
program context ¢) amounts to checking whether Qg1 <= ¢2], is defined at
that state. For example, the patterns foo and x match in all states where the
variable z evaluates to foo — which is the same as saying that Qlfoo <= x|,
is defined at all states where  evaluates to foo. o

In this way, checking that two patterns match in a given state can be
reduced to checking whether a partial function is defined at a given point.

For a given partial injection X ER Y, we define the classifying predicate

XY xex (related, but not equivalent, to the idea of classified partiality,
see, e.g., [20, 21]) defined as follows:

(z) = inr z if f defined at x
XA = inl 2 otherwise .

In the convention that left injection corresponds to falsehood, and right in-
jections to truth, x is true at  if and only if when f is defined at x. This
allows us to give semantics to rewrite blocks in the following way:

Clrewrite ¢ by 1 = ¢; -+ 5 qn = ¢, etirwer],(0) =
f(C[rewrite g by g2 = ¢b; - -+ ; qn = ¢, etirwer]y)(o) ifn >1
C[abort] s (o) ifn=0

where f(x) = (Xc[[qiﬁ,]](ﬂ)T o(r@Cla <= 49 <= ¢i]s) © Xelg=qls -
The right-hand side of the equation is expanded as

S (- (f(Clabort]s)) - --)) (o) -
—

n

As such, this is essentially an n-armed multiconditional using the classifying
predicate Xc[g«<q), O test whether the ¢’th branch should be chosen, and
using the inverse classifying predicate (Xc[[q;<:q]] ¢)T as the exit assertion of the
i’th branch. Since ¢, < ¢ is inverse to ¢ <= ¢} (see Section 4.8), it must be
defined after performing ¢ <= ¢} if this is defined at all, and since ¢, ..., ¢,
are assumed to be disjoint, at most one of the classifying predicates xcjy <,
is true at any one time. Hence, the exit assertion property is satisfied.

Note that since ¢, ..., ¢, and q, ..., q,, respectively, are required to be
disjoint, in principle, we are free to change the order of branches. This
approach is more conservative than the symmetric first match policy used in
the reversible functional programming language RFUN [18].

Alternatively, we can define xc[g, <), in the presented metalanguage L:
XCla<dly = ((Q[[q]]qbﬁ S5 (fT o Kg))o f
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where f = Q'[¢1] 40 Qlg]s and ¥ x V lliN (X x V)@ X. Essentially, Q'[¢]s
behaves like the inverse of Q[q], and its result is with the tag inr. But Q'[¢]s
can also detect pattern matching failures. When pattern matching fails, the
result is the original input with the tag inl. Specifically, we can represent the
functionality of Q'[q], as follows:

inr ((Q[lq]s)! (o, v if (Q[q]s)" is defined at (o, v
ooy | (Ll (.0) it (Qlal) (0,0)

inl (o,v) otherwise .
The exact definition of this function in the presented metalanguage £ is in
Appendix C.

6. Related Work

Formal meaning has been given to reversible programming languages us-
ing well-established formalisms such as operational semantics to the imper-
ative language Janus [1], the functional language RFUN [18], and to con-
current languages [22], small-step operational semantics to the assembler
language PISA [15], transition functions to the flowchart language RFCL [2],
and denotational semantics to R-WHILE [3, 4]. The reversibility of a language
is not directly expressed by these formalisms. It is up to the language de-
signer’s discipline to capture reversibility and to show the inversion properties
for each language individually. Additionally, the semantics of R-WHILE was
first expressed irreversibly [1]. The type and effects systems were studied for
reversible languages [23] (see also [24]).

In this paper, the reversible elements of R-WHILE are composed by the
metalanguage £ in a manner that preserves their reversibility. Composi-
tional approaches to reversibility have been used in various disguises includ-
ing the diagrammatic composition of reversible circuits from reversible logic
gates and reversible structured flowcharts from reversible control-flow opera-
tors [2]. The categorical approach to reversible structured flowchart seman-
tics was pioneered by [5]. Similarly, reversible Turing machines were built
from reversible rotary elements [25].

The category PInj of sets and partial injective functions has a rich history
of study in relation to various reversible computation models (e.g., [26, 12]),
but perhaps in particular those arising from the Geometry of Interaction (see
[27] for an overview). An interesting recent example concerns the denota-
tional semantics of Janus based on partial injective functions [8], and given
that this approach is based on the same category as our metalanguage £
is, there are many similarities, though presentations differ. To make simi-
larities clearer, we show in Figure 5 the representation of (certain) £ terms
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Figure 5: An overview of (certain) £ terms and their graphical representation in the style
of [8].

in the graphical language employed by [8] (see also [13] regarding graphical
languages).

To give meaning to reversible languages by translators and interpreters
is another operational approach to a semantics. Examples include reversible
interpreters [1, 3|, translation of the high-level language R to the reversible
assembler language PISA [28], mapping hardware descriptions in SyReC to
reversible circuits [29], and processor architectures [30]. A different approach
is the reversibilization of irreversible languages by extending the operational
semantics by tracing to undo program runs [31]. Alternatively, irreversible
programs can be inverted using different program inversion approaches, e.g.,
[32, 33, 34]. Reversible cellular automata may have non-injective local maps,
but if the local map is injective, the update by the global map is guaranteed
to be reversible [35].

7. Conclusion

Reversible systems have reversible semantics. In the present paper, we
built on a metalanguage foundation intended to describe the semantics of
reversible programming languages, which we demonstrated by the full devel-
opment of a formal semantics of the reversibly-universal language R-WHILE. It
allowed us to concisely formalize features representative of many reversible
languages, including iteration, recursion, pattern matching, dynamic data
structures, and access to a program’s inverse semantics. The intrinsic proper-
ties of the metalanguage were essential in giving formal reversible semantics.
A language defined in the metalanguage is guaranteed to have reversibility,
which means it requires no explicit proof of reversibility. We argued that
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this metalanguage approach serves as a strong basis for understanding and
reasoning about reversible programs.

It could be interesting to further explore how advanced object-oriented
structures, combinators, or features for concurrency are best described and
the metalanguage features that may be useful. Characterizing reversible
heap allocation and concurrent reversible computations are some of those
challenges. However, its practical feasibility and relationship to advanced
reversible automata including nondeterminism, e.g., [36] remains to be ex-
plored.
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pendix A. The Correctness of Command Inverter Z

As in [5, Section 8|, the correctness of the command inverter Z defined

in Fig. 3 are shown as follows. We prove that for any command ¢ there
is a command Z[c] such that C[Z[c]], = (C[c],)! for any o. To prove it
by structural induction on command ¢, it is sufficient to show the following
derivations:

ClZ[er; c2lls

= C[Z[e2]; Z[eal]s

= C[Z]e2]ly o C[Z[ex]]
= (Clealy)" o (Clealy)T
= (Cle]p o Cleally)’

= (Cler; caly)’

C[Zlz: = ells

=Clzi = e1]s
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Qg o E[ea] 0 Q]
(Qlzily)' o (Eles)T o (Qlil )™
(Qlzily)" o Eler] 0 Qfailly)

Clzi = e1]s)!

o~ o~ o~ o~

ClZlar = ells

= Cla2 <= a1]y

= (Qlaz]p)" o Qlan]y

= ((Qlaily)" o Qlga]p)!

= (Cla1 <= a21y)

C[ZTif eq then ¢ else c3 fi ea]]g

= C[if ez then Z[¢1] else Z]ca] fi e1]4

= Tlez]" o (C[Ze:lls © CIZIer]ls) o Teal

= (Tlea]" o (C[Zle2]ls)" @ (CIZer]]s)) o Tleal)!
= (Tlezl" o (Cllealle @ Cllea]g) © Tleal)'

= (C[[if e then ¢y else ¢y fi €] )T

C[Z[from e; do ¢; loop ¢z until e2]]4

= C[from ey do Z[c1] loop Z[ca] until e1]

= Tr ((ids; ® C[Z[e2]ly) © Tler] o CIZlealls o Tlea]')

= Tr (7'[[61]] oC[Z[e]]p o Tleal" o (ids @ C[{I[[Cz]]]]qs))
= (1 ((idg © (CEealle)) o Tleal o Clzlealle) o TTer]') )’
- (Tr ((idE ® Clealy) o Tlea] o Clealpo T [[eﬂ]*))T
= (C[from €1 do ¢ loop ¢y until 62ﬂ¢)T
Because for any o, C[Z[Z[c]]]ls = (CIZ[c]],)" = (C[c],)!, we have
Z[Z[]] = e
Appendix B. Renaming Procedure Names R

The translator R replaces each procedure f; with its inverse f/™ with pre-
serving the meaning. Note that call /uncall patterns are flipped to uncall /call
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patterns, respectively.

Rlz;] = z;
R[s] =
Rlcall fi(q1)] = uncall f(R[a1])
Rluncall f;(1)] = call £ (Ra])
Rl(q1-92)] = (R[a1] - Rlg2])
Rlz=e]=x=e
Rlar <= g2] = Rla1] <= Rlg]
Rler; c2] = Rler]; Rfe2]
R[if e1 then ¢ else ca fi ex] = if €1 then R[c1] else R[cza] fi ez

R[from ey do ¢1 loop o until e3] = from e; do Rfe1] loop R[ca] until ey

Appendix C. The helper semantic function Q’[q],

w10, v) {mr e;t;’L‘mctJr (o,v)) ifmi(o)=v
ile

inl otherwise
inr o ifs=w
Qlsls(ov) = {lnl otherwise
_Jinrog if Q'[¢1]4(o,v1) =inr o1 and RI(¢T(Hi(U1))) =v
Qleall filan)ls(o,v) = inl ( if '[q1]4(o,v) =inlz
inr oy if Q'[q1]g(o,v1) = inr oy and k! (¢(ki(v))) = vy
Q' uncall f;(q1)]4(o,v) inl ( if (Q'[q1]¢(o,v1) = inl z and ! ((ks(v))) = v1)
or Q¢1]g(o,v) =inl z
inr oy it Q'q2]¢(0,v2) = inr o9 and Q'[q1]y(o2,v1) = inr o1
Q'[(q1-92)]6 (0, v1 ®v2) = < inl (0,01 @ vg) if (Q'[ga]y(c,v2) = inr o2 and Q'[q1] (v, v1) = inl z)

or Q¢g2]¢(o,v2) =inl x

Appendix D. Conditionals as Syntax Sugar

This is an example equational reasoning using L.
We can swap two values swap(z1,x2) by using the zeroed variable z3.

swap(x1, o) = X3 <= T1; T <= Tg; Ty <= T3
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The one-armed loop is sufficient to simulate reversible conditionals as
demonstrated in [3]:

if x1 else ¢1 fi x1 = from x5 loop ¢1; swap(zy, xs) until x1; swap(xq,x2)

This law is proved by the following derivation. We assume T [xs](0) =
inr 0. Let f = (C[ler; swap(w1,22)]y @ ids) o Tz1] o Tzz].

C[from x5 loop c1; swap(xq,x2) until z1]4(0)

= Tr(f)(0)
= pretrace(f)(inr o)
_ {a if Tla1](o) =inr o
pretrace(f)(inl (Cler; swap(z1, x2)]g(0))) if T[z1](o) =inl o
_ {0‘ if T[z1](o) =inr o
Cler; swap(x1, x2)]¢(0) if Tlz1](o) =inl o

Hence, we have

C[from x5 loop c1; swap(x1,x2) until x1; swap(z1,22)]s(0)
_ {C[[swap(xl,xg)]]¢(a) if T[z1](c) =inr o
Clei](o) if T[z1](c) =inl o
_ {a if T[z1](0) =inro
Clei]p(o) if Txq](0) =inl o
= (Tz1] o (ids @ Cle1]ly) © Tzl ) (o)
= C[if z1 else ¢1 fi 21]4(0)
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