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a human perspective on a phd project

We tend to think of scientists as devices with the signature

Funding⊗ Coffee Scientist−−−−−→ Science⊗ Noise

Noise: Opinions, essays titled “XYZ considered harmful”, etc.
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overview

• Reversible computing: What, how, why?
• Reversibility from a denotational perspective
• Theme: Reversible recursion
• Models of reversible programming languages
• Other work
• Concluding remarks
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reversible computing

Reversible computing is the study of models of computation that
exhibit both forward and backward determinism.

IBT B VOJRVF QSFWJPVT TUBUF� ɨJT JT UZQJDBMMZ OPU HVBSBOUFFE CZ DPNNPO QSPHSBNNJOH
MBOHVBHFT� 'PS FYBNQMF
 JO BO JNQFSBUJWF MBOHVBHF
 B QSPHSBN QFSGPSNJOH B EFTUSVDUJWF
BTTJHONFOU TVDI BT

t ,= k

JT OPU CBDLXBSE EFUFSNJOJTUJD
 TJODF UIFSF JT HFOFSBMMZ OP XBZ PG SFDPWFSJOH UIF TUBUF PG t
CFGPSF JU XBT BTTJHOFE UP IBWF UIF WBMVF k� -JLFXJTF
 JO GVODUJPOBM QSPHSBNNJOH MBOHVBHFT

CSBODIJOH FYQSFTTJPOT 	TVDI BT DPOEJUJPOBMT PS DBTF�FYQSFTTJPOT
 BSF DPNNPO TPVSDFT PG
CBDLXBSE OPOEFUFSNJOJTN
 BT UXP PS NPSF CSBODIFT NBZ QSPEVDF JEFOUJDBM PVUQVUT PO
EJTUJODU JOQVUT�

X X

Previous Current Next

'JHVSF ���� 'PSXBSE BOE CBDLXBSE EFUFS�
NJOJTN�

ɨF MPDBMJUZ PG GPSXBSE BOE CBDLXBSE EFUFSNJO�
JTN JT B DSVDJBM QBSU PG XIBU JT TPNFUJNFT IVNPSPVTMZ
DBMMFE UIF $PQFOIBHFO JOUFSQSFUBUJPO PG SFWFSTJCJMJUZ
 BOE
JT PGUFO QSFTFOUFE CZ UIF TMPHBO UIBU SFWFSTJCJMJUZ JT B MP�
DBM QIFOPNFOPO� $PODSFUFMZ
 JU SFRVJSFT OPU POMZ UIBU
UIF FOUJSF QSPHSBN CFIBWFT JO B XBZ UIBU JT GPSXBSE
BOE CBDLXBSE EFUFSNJOJTUJD 	J�F�
 JOQVUT VOJRVFMZ EF�
UFSNJOF PVUQVUT BOE WJDF WFSTB

 CVU UIBU BOZ DPNQV�
UBUJPO TUFQ BMPOH UIF XBZ 	OP NBUUFS JG JU JT B TJNQMF
JOTUSVDUJPO PS B DPNQMJDBUFE MPPQ TUSVDUVSF
 CFIBWFT
JO UIJT XBZ BT XFMM� 1VU JO BOPUIFS XBZ
 SFWFSTJCJMJUZ JT B QSPQFSUZ PG UIF QSPHSBN SBUIFS
UIBO UIF GVODUJPO JU DPNQVUFT 	J�F�
 JU JT BO JOUFOTJPOBM QSPQFSUZ
� 8JUIPVU UIF FNQIB�
TJT PO MPDBMJUZ
 JU JT OPU DMFBS UIBU POF XPVME CF BCMF UP TFQBSBUF SFWFSTJCMF QSPHSBNT GSPN
UIPTF NFSFMZ DPNQVUJOH JOKFDUJWF GVODUJPOT 	XIJDI JT B EJTUJODUJPO XF XJTI UP NBLF
� 8F
TVNNBSJTF UIJT WJFX PO SFWFSTJCJMJUZ JO UIF GPMMPXJOH EFmOJUJPO�

%FmOJUJPO �� " QSPHSBN JT SFWFSTJCMF JG JU JT MPDBMMZ GPSXBSE EFUFSNJOJTUJD BOE MPDBMMZ CBDL�
XBSE EFUFSNJOJTUJD�

" DPOTFRVFODF PG UIJT WJFX JT UIBU SFWFSTJCMF QSPHSBNT DBO CF VOJRVFMZ BTTJHOFE CPUI
GPSXBSE BOE CBDLXBSE TFNBOUJDT
 JG UIFZ DBO CF BTTJHOFE TFNBOUJDT BU BMM� "T BO FYBNQMF

DPOTJEFS B BO PQFSBUJPOBM TFNBOUJDT GPS BO JNQFSBUJWF MBOHVBHF
 J�F�
 XJUI B KVEHNFOU GPSN
PG σ ⊢ p ↓ σ′ UBLFO UP NFBO UIBU FWBMVBUJOH BOZ DPNNBOE p JO UIF TUBUF σ ZJFMET UIF TUBUF
σ′� 'PSXBSE EFUFSNJOJTN TUBUFT UIBU GPS BMM TUBUFT σ BOE DPNNBOET p
 UIFSF JT BU NPTU POF
TUBUF σ′ TVDI UIBU σ ⊢ p ↓ σ′� 4ZNNFUSJDBMMZ
 CBDLXBSE EFUFSNJOJTN TUBUFT UIBU GPS BMM
TUBUFT σ′ BOE DPNNBOET p
 UIFSF JT BU NPTU POF TUBUF σ TVDI UIBU σ ⊢ p ↓ σ′�

4JODF SFWFSTJCJMJUZ JT BO JOUFOTJPOBM QSPQFSUZ
 JU SFRVJSFT WFSZ DBSFGVM QSPHSBN DPOTUSVD�
UJPO
 BOE KVTU BT DBSFGVM BSHVNFOUBUJPO
 UP FTUBCMJTI GPS B QSPHSBN� &WFO XPSTF
 JU JT EJG�
mDVMU FWFO UP IFVSJTUJDBMMZ DIFDL GPS SFWFSTJCJMJUZ CZ NFBOT PG UFTUJOH
 BT USBEJUJPOBM UFTUJOH
UFDIOJRVFT BSF EFTJHOFE UP UFTU FYUFOTJPOBM QSPQFSUJFT 	F�H�
 *�0 CFIBWJPVS
 SBUIFS UIBO JO�
UFOTJPOBM POFT� 'PS UIJT SFBTPO
 UIF QSPCMFN PG HVBSBOUFFJOH SFWFSTJCJMJUZ GPS QSPHSBNT JT
POF CFTU TPMWFE UISPVHI DBVUJPVT EFTJHO PG QSPHSBNNJOH MBOHVBHFT
 TVDI UIBU UIF CVSEFO

�

As a consequence, reversible computers are just as happy running
backwards as they are running forward.
Functions computed by reversible means are injective.
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“I’m sorry, wait… you want to make computers do what?”
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reversible computing

Information is physical.

Landauer: Erasing information, no matter how you do it, costs
energy: at least kT log(2) joules per bit of information, to be precise.

Reversible computing: Computing without information erasure –
avoids Landauer limit, potential to reduce power consumption of
computing machinery.

Incidental applications: Naturally invertible problems, has even
seen applications in the programming of assembly robots(!)
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a broader perspective

“So what is it that you do exactly?”
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a broader perspective

“Caution!!!! Live bees // Part of a Master’s thesis study”
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a broader perspective

$,=’’;sub f{my($a,$r)=@_;@$a-$_||print@$a;
for$c(0..$_-1){my($i,$b);for(@$a){$b=1,last
if$c==$_||abs$c-$_==$r-$i++}!$b&&f(
$A=[@$a,$c],$r+1)&&return$A}}f([])

(Credit: User vakorol at jagc.org)
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a broader perspective

Observation Hypothesis Prediction Experiment

Hypothesis formulated as a mathematical model, predictions
extracted from this. Experiments replaced by formal proofs.

Mathematical modelling tool of choice: Category theory.
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a categorical understanding of reversibility

Starting point: Inverse categories – categories where each morphism
X f−→ Y has a unique partial inverse Y f†−→ X such that f ◦ f† ◦ f = f and
f† ◦ f ◦ f† = f†.

Canonical example: The category PInj of sets and partial injective
functions.

Thesis (B. G. Giles): Inverse categories are semantic domains for
reversible computation.

However, partial invertibility is not enough: This is closer to
injectivity than to reversibility, and we need to be able to separate
the two.

B. G. Giles, An investigation of some theoretical aspects of reversible computing, 2014.
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a categorical understanding of reversibility

Idea: Exploit compositionality.

A program p is said to be reversible iff for every meaningful
subprogram p′ of p, Jp′K is partially invertible.
Compositionality also seems central to the operational
understanding of reversibility: A program is reversible if it only
performs reversible primitive operations, and if these operations are
combined in a way that preserves this property.

Thesis (me): Reversible programs have compositional semantics.
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reversible recursion

When you’re first taught about reversible programming, the
programming language Janus is usually the starting point.
Janus looks very similar to other procedural languages; it has atomic
state update commands, while loops, conditionals, etc.
However, the latter two look a little differently than usual.
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Figure 1: Structured reversible flowcharts.

assertion p2 : X ! Bool ; and a sequence of blocks B1 and B2. The operational semantics of
these are shown in Figure 2.

A structured reversible flowchart F consists of one main block. Blocks have unique entry
and exit points, and can be nested any number of times to form more complex flowcharts.
The interpretation of F consists of a given domain X (typically, a store) and a finite set of
partial injective functions a and predicates p : X ! Bool . Computation starts at the entry
point of F in an initial x0 (the input), proceeds sequentially through the edges of F , and
ends at the exit point of F in a final xn (the output), if F is defined on the given input.
Though the specific set of predicates depend on the flowchart language, they are often (as
we will do here) assumed to be closed under Boolean operators, in particular conjunction
and negation. The operational semantics for these are the same as in the irreversible case;
see Figure 3.

The assertion p1 in a reversible while loop (marked by the circle [32]) is a new flowchart
operator: the predicate p1 must be true when the control flow reaches the assertion along
the t-edge, and false when it reaches the assertion along the f -edge; otherwise, the loop is
undefined. The test p2 (marked by a diamond) has the usual semantics. This means that B
in a loop is repeated as long as p1 and p2 are false.

The selection has an assertion p2, which must be true when the control flow reaches the
assertion from B1, and false when the control flow reaches the assertion from B2; otherwise,
the selection is undefined. As usual, the test p1 selects B1 or B2. The assertion makes the
selection reversible.

Despite their simplicity, reversible structured flowcharts are reversibly universal [2],
which means that they are computationally as powerful as any reversible programming
language can be. Given a suitable domain X for finite sets of atomic operations and
predicates, there exists, for every injective computable function f : X ! Y , a reversible
flowchart F that computes f .

Reversible structured flowcharts (Figure 1) have a straightforward representation as
program texts defined by the grammar

B ::= a | from p loop B until p | if p then B else B fi p | B ; B

It is often assumed, as we will do here, that the set of atomic steps contains a step skip
that acts as the identity. Reversible structured flowcharts defined above corresponds to the
reversible language R-WHILE [16], but their value domain, atomic functions and predicates
are unspecified. As a minimum, a reversible flowchart needs blocks (a,b,d) because selection
(c) can be simulated by combining while loops that conditionally skip the body block or
execute it once. R-CORE [17] is an example of such a minimal language.
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The assertion p1 in a reversible while loop (marked by the circle [32]) is a new flowchart
operator: the predicate p1 must be true when the control flow reaches the assertion along
the t-edge, and false when it reaches the assertion along the f -edge; otherwise, the loop is
undefined. The test p2 (marked by a diamond) has the usual semantics. This means that B
in a loop is repeated as long as p1 and p2 are false.

The selection has an assertion p2, which must be true when the control flow reaches the
assertion from B1, and false when the control flow reaches the assertion from B2; otherwise,
the selection is undefined. As usual, the test p1 selects B1 or B2. The assertion makes the
selection reversible.

Despite their simplicity, reversible structured flowcharts are reversibly universal [2],
which means that they are computationally as powerful as any reversible programming
language can be. Given a suitable domain X for finite sets of atomic operations and
predicates, there exists, for every injective computable function f : X ! Y , a reversible
flowchart F that computes f .

Reversible structured flowcharts (Figure 1) have a straightforward representation as
program texts defined by the grammar

B ::= a | from p loop B until p | if p then B else B fi p | B ; B

It is often assumed, as we will do here, that the set of atomic steps contains a step skip
that acts as the identity. Reversible structured flowcharts defined above corresponds to the
reversible language R-WHILE [16], but their value domain, atomic functions and predicates
are unspecified. As a minimum, a reversible flowchart needs blocks (a,b,d) because selection
(c) can be simulated by combining while loops that conditionally skip the body block or
execute it once. R-CORE [17] is an example of such a minimal language.

Reversible while loops here perform reversible tail recursion.
T. Yokoyama, R. Glück, A Reversible Programming Language and its Invertible Self-Interpreter, 2007
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reversible recursion

Then, you graduate to Rfun: A reversible functional programming
language (originally in the style of LISP/Scheme).
Save for a strange operator (duplication/equality) and some
semantic conditions on case-expressions, it is virtually
indistinguishable from ordinary functional programming languages
in that style.
…save for the ability to uncall functions (i.e., call the inverse
function).
It even supports general recursion, which works exactly as it does
irreversibly (i.e., using a call stack).

T. Yokoyama, H. B. Axelsen, R. Glück, Towards a Reversible Functional Language, 2011
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reversible recursion
24 T. Yokoyama, H.B. Axelsen, and R. Glück

Ip[[d∗]] = Id[[d]]
∗

Id[[f l ! e]] = f−1 x ! case x of I[[e, l]]

I[[l, e]] = {l → e}
I[[let l1 = f l2 in e′, e]] = I[[e′, let l2 = f−1 l1 in e]]

I[[rlet l1 = f l2 in e′, e]] = I[[e′, rlet l2 = f−1 l1 in e]]

I[[case l of {pi → ei}mi=1, e]] = ∪m
i=1(if σi ̸= ⊥ then I[[ei,σie]]

else I[[ei, case pi of l → e]])

where σi is the unification of l and pi

Fig. 6. Program inversion (x is a fresh variable)

fib−1 x1 ! case x1 of

⟨S(Z), S(Z)⟩ → Z

x2 → let ⟨y, x⟩ = plus−1 x2 in

let m = fib−1 ⟨x, y⟩ in
S(m)

(24)

plus−1 z ! case z of

⌊⟨x⟩⌋ → ⟨x, Z⟩
⟨x′, S(u′)⟩ → let ⟨x, u⟩ = plus−1 ⟨x′, u′⟩ in ⟨x, S(u)⟩

(25)

Fig. 7. Inverse functions of fib and plus (x1 and x2 are fresh variables)

ensures x2 only match with values that are not ⟨S(Z), S(Z)⟩. The subtraction,
plus−1⟨x, x + y⟩ = ⟨x, y⟩, is obtained by program inversion of plus from Fig. 4.
Here, we see how it is convenient that the ⌊·⌋ operator can occur in the pattern
of a case-expression, so that, in this example, the inversion is realized by just
swapping the left- and right-hand sides of branches.

2.6 r-Turing Completeness

We show the proposed language is r-Turing complete [3]; the language can sim-
ulate any reversible Turing machine (RTM).

Definition 1 (Turing Machine). A Turing machine T is a tuple (Q,Σ, b, δ, qs,
qf ) where Q is a finite set of states, Σ is a finite set of tape symbols, b ∈ Σ is
the blank symbol,

δ :Q× [(Σ ×Σ)∪{←, ↓,→}]×Q (26)

is a partial relation defining the transition rules, qs ∈ Q is the starting state, and
qf ∈ Q is the final state. Symbols ←, ↓, → represent the three shift directions
(left, stay, right).

The inverse to a recursive function is a recursive function
constructed by inverting the function body, replacing the
(original) recursive call with a recursive call to the thus
constructed inverse.

T. Yokoyama, H. B. Axelsen, R. Glück, Towards a Reversible Functional Language, 2011
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reversible recursion

In summary:

• Tail recursion (as in Janus) requires some surgery to work
reversibly.

• General recursion (as in Rfun) just works reversibly as usual,
and it even comes with nice inversion properties included.

What is going on here?!
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“I don’t know… we’ve always done it that way.”
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reversible recursion

A friend in need: Domain theory.
Join inverse categories: Inverse categories equipped with an
operator ∨ for “gluing” parallel maps together if they are somehow
compatible.
Theorem: Every join inverse category is canonically enriched in the
category of directed-complete partial orders and continuous maps.
As a consequence, every functional φ : C(X, Y) → C(X, Y) has a least
fixed point fix φ : X→ Y ⇒ general recursion!

X. Guo, Products, Joins, Meets, and Ranges in Restriction Categories, 2012
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reversible recursion

Even better: The inverse to such fixed points may be constructed
exactly as Rfun prescribes!
Theorem: Every functional φ : C(X, Y) → C(X, Y) has a fixed point
adjoint φ : C(Y, X) → C(Y, X) satisfying (fix φ)† = fix φ.
Trick: Define φ(f) = φ(f†)† (just like the Rfun program inverter
instructed).
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reversible recursion

A join-preserving disjointness tensor : A “sum-like” symmetric
monoidal tensor (−)⊕ (−) that preserves joins in each component.
Specifically has injections

X ⨿1−→ X⊕ Y Y ⨿2−→ X⊕ Y

Such a join inverse category is also a (strong) unique decomposition
category .

B. G. Giles, An investigation of some theoretical aspects of reversible computing, 2014.
E. Haghverdi, A categorical approach to linear logic, geometry of proofs and full completeness, 2000
N. Hoshino, A Representation Theorem for Unique Decomposition Categories, 2012
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reversible recursion

In particular, it has a categorical trace given by the trace formula

Tr(f) =
(∨
n∈ω

f21 ◦ f n22 ◦ f12
)

∨ f11

where fij = ⨿†
j ◦ f ◦ ⨿i.

This is a dagger trace: It satisfies Tr(f†) = Tr(f)†.

This is precisely what the reversible functional programming
language Theseus uses for reversible (tail) recursion. Can also be
used to model reversible while loops (more on this later).
E. Haghverdi, A categorical approach to linear logic, geometry of proofs and full completeness, 2000
P. Selinger, A survey of graphical languages for monoidal categories, 2011
R. P. James, A. Sabry, Theseus: A High Level Language for Reversible Computing, 2014
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structured reversible flowchart languages

Put the “abstract nonsense” to work: Denotational semantics for
structured reversible flowchart languages.

Structured reversible flowchart language: A reversible imperative
language with a number of atomic steps and predicates which may
be combined using the following four flowchart structures.
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Figure 1: Structured reversible flowcharts.

assertion p2 : X ! Bool ; and a sequence of blocks B1 and B2. The operational semantics of
these are shown in Figure 2.

A structured reversible flowchart F consists of one main block. Blocks have unique entry
and exit points, and can be nested any number of times to form more complex flowcharts.
The interpretation of F consists of a given domain X (typically, a store) and a finite set of
partial injective functions a and predicates p : X ! Bool . Computation starts at the entry
point of F in an initial x0 (the input), proceeds sequentially through the edges of F , and
ends at the exit point of F in a final xn (the output), if F is defined on the given input.
Though the specific set of predicates depend on the flowchart language, they are often (as
we will do here) assumed to be closed under Boolean operators, in particular conjunction
and negation. The operational semantics for these are the same as in the irreversible case;
see Figure 3.

The assertion p1 in a reversible while loop (marked by the circle [32]) is a new flowchart
operator: the predicate p1 must be true when the control flow reaches the assertion along
the t-edge, and false when it reaches the assertion along the f -edge; otherwise, the loop is
undefined. The test p2 (marked by a diamond) has the usual semantics. This means that B
in a loop is repeated as long as p1 and p2 are false.

The selection has an assertion p2, which must be true when the control flow reaches the
assertion from B1, and false when the control flow reaches the assertion from B2; otherwise,
the selection is undefined. As usual, the test p1 selects B1 or B2. The assertion makes the
selection reversible.

Despite their simplicity, reversible structured flowcharts are reversibly universal [2],
which means that they are computationally as powerful as any reversible programming
language can be. Given a suitable domain X for finite sets of atomic operations and
predicates, there exists, for every injective computable function f : X ! Y , a reversible
flowchart F that computes f .

Reversible structured flowcharts (Figure 1) have a straightforward representation as
program texts defined by the grammar

B ::= a | from p loop B until p | if p then B else B fi p | B ; B

It is often assumed, as we will do here, that the set of atomic steps contains a step skip
that acts as the identity. Reversible structured flowcharts defined above corresponds to the
reversible language R-WHILE [16], but their value domain, atomic functions and predicates
are unspecified. As a minimum, a reversible flowchart needs blocks (a,b,d) because selection
(c) can be simulated by combining while loops that conditionally skip the body block or
execute it once. R-CORE [17] is an example of such a minimal language.
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we will do here) assumed to be closed under Boolean operators, in particular conjunction
and negation. The operational semantics for these are the same as in the irreversible case;
see Figure 3.

The assertion p1 in a reversible while loop (marked by the circle [32]) is a new flowchart
operator: the predicate p1 must be true when the control flow reaches the assertion along
the t-edge, and false when it reaches the assertion along the f -edge; otherwise, the loop is
undefined. The test p2 (marked by a diamond) has the usual semantics. This means that B
in a loop is repeated as long as p1 and p2 are false.

The selection has an assertion p2, which must be true when the control flow reaches the
assertion from B1, and false when the control flow reaches the assertion from B2; otherwise,
the selection is undefined. As usual, the test p1 selects B1 or B2. The assertion makes the
selection reversible.

Despite their simplicity, reversible structured flowcharts are reversibly universal [2],
which means that they are computationally as powerful as any reversible programming
language can be. Given a suitable domain X for finite sets of atomic operations and
predicates, there exists, for every injective computable function f : X ! Y , a reversible
flowchart F that computes f .

Reversible structured flowcharts (Figure 1) have a straightforward representation as
program texts defined by the grammar

B ::= a | from p loop B until p | if p then B else B fi p | B ; B

It is often assumed, as we will do here, that the set of atomic steps contains a step skip
that acts as the identity. Reversible structured flowcharts defined above corresponds to the
reversible language R-WHILE [16], but their value domain, atomic functions and predicates
are unspecified. As a minimum, a reversible flowchart needs blocks (a,b,d) because selection
(c) can be simulated by combining while loops that conditionally skip the body block or
execute it once. R-CORE [17] is an example of such a minimal language.
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Figure 1: Structured reversible flowcharts.

assertion p2 : X ! Bool ; and a sequence of blocks B1 and B2. The operational semantics of
these are shown in Figure 2.

A structured reversible flowchart F consists of one main block. Blocks have unique entry
and exit points, and can be nested any number of times to form more complex flowcharts.
The interpretation of F consists of a given domain X (typically, a store) and a finite set of
partial injective functions a and predicates p : X ! Bool . Computation starts at the entry
point of F in an initial x0 (the input), proceeds sequentially through the edges of F , and
ends at the exit point of F in a final xn (the output), if F is defined on the given input.
Though the specific set of predicates depend on the flowchart language, they are often (as
we will do here) assumed to be closed under Boolean operators, in particular conjunction
and negation. The operational semantics for these are the same as in the irreversible case;
see Figure 3.

The assertion p1 in a reversible while loop (marked by the circle [32]) is a new flowchart
operator: the predicate p1 must be true when the control flow reaches the assertion along
the t-edge, and false when it reaches the assertion along the f -edge; otherwise, the loop is
undefined. The test p2 (marked by a diamond) has the usual semantics. This means that B
in a loop is repeated as long as p1 and p2 are false.

The selection has an assertion p2, which must be true when the control flow reaches the
assertion from B1, and false when the control flow reaches the assertion from B2; otherwise,
the selection is undefined. As usual, the test p1 selects B1 or B2. The assertion makes the
selection reversible.

Despite their simplicity, reversible structured flowcharts are reversibly universal [2],
which means that they are computationally as powerful as any reversible programming
language can be. Given a suitable domain X for finite sets of atomic operations and
predicates, there exists, for every injective computable function f : X ! Y , a reversible
flowchart F that computes f .

Reversible structured flowcharts (Figure 1) have a straightforward representation as
program texts defined by the grammar

B ::= a | from p loop B until p | if p then B else B fi p | B ; B

It is often assumed, as we will do here, that the set of atomic steps contains a step skip
that acts as the identity. Reversible structured flowcharts defined above corresponds to the
reversible language R-WHILE [16], but their value domain, atomic functions and predicates
are unspecified. As a minimum, a reversible flowchart needs blocks (a,b,d) because selection
(c) can be simulated by combining while loops that conditionally skip the body block or
execute it once. R-CORE [17] is an example of such a minimal language.

T. Yokoyama, H. B. Axelsen, R. Glück, Fundamentals of reversible flowchart languages, 2015
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structured reversible flowchart languages

Example: The family RINTk. Reversible programming with k integer
variables available (assumed zero-cleared at beginning).

p ::= true | false | xi = 0 (Atomic predicates)
| p and p | not p (Boolean operators)

c ::= xi += xj | xi −= xj | xi += n (Atomic steps)
| c ; c (Sequencing)
| if p then c else c fi p (Conditionals)
| from p loop c until p (Loops)

Other examples: Janus (without recursion), R-WHILE, R-CORE.

R. Glück, T. Yokoyama, A Linear-Time Self-Interpreter of a Reversible Imperative Language, 2016
R. Glück, T. Yokoyama, A Minimalist’s Reversible While Language, 2017
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representing predicates

Immediate roadblock: How do we represent Boolean predicates
reversibly? (Like everything else, they may diverge on some inputs!)

Representing Boolean predicates on X as morphisms

X p−→ 1+ 1

doesn’t work – no coproducts, terminal object degenerate.

X p−→ I⊕ I

for suitable distinguished object I – generally not invertible.
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representing predicates

Better: As morphisms
X p−→ X⊕ X

which additionally satisfy that they only tag inputs with either left or
right, but does not change them in any way.

Convention: Things sent to the left are considered true, things sent
to the right are considered false.

Morphisms very similar to these are known in the literature as
decisions. Adapting to inverse categories:

Extensive inverse category: An inverse category with a disjointness
tensor in which each map X f−→ Y⊕ Z has a unique decision
X ⟨f⟩−→ X⊕ X (axioms omitted).
R. Cockett, S. Lack, Restriction categories III: colimits, partial limits and extensivity, 2007
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“[A decision is a map which] decides which branch to take,
but doesn’t yet do any actual work”
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representing predicates

We can do Boolean operations and constants this way as well, e.g.

JttK = ⨿1JffK = ⨿2Jnot pK = γ ◦ JpK
(Conjunction and disjunction also possible, but too gory to show in
detail!)

Observation: The partial inverse to a predicate is precisely its
corresponding assertion.
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setup

A join inverse category with a join-preserving disjointness tensor
(specifically an extensive inverse category) equipped with

• Distinguished objects I (with some properties) and Σ such that
states have an interpretation as total morphisms

JσK : I→ Σ ,

• interpretations of atomic steps as morphisms

JcK : Σ → Σ ,

• and interpretations of atomic predicates as decisions on Σ,

JpK : Σ → Σ⊕ Σ .

• By previous slide, we may close atomic predicates under
Boolean operations.
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conditionals

12 GLÜCK AND KAARSGAARD
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For reversible loops, we use the †-trace operator to obtain the denotation

Jfrom p loop c until qK = Tr⌃⌃,⌃(id⌃ � JcK JqK JpK†)
or diagrammatically

u
wv

-
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f
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That this has the desired operational behavior follows from the fact that the †-trace operator
is canonically constructed in join inverse categories as

TrUX,Y (f) = f11 _
_

n2!
f21f

n
22f12 .

Recall that fij = q†
jfqi. As such, for our loop construct defined above, the f11-cases

correpond to cases where a given state bypasses the loop entirely; f21f12 (that is, for n = 0)
to cases where exactly one iteration is performed by a given state before exiting the loop;
f21f22f12 to cases where two iterations are performed before exiting; and so on. In this way,
the given trace semantics contain all successive loop unrollings, as desired. We will make
this more formal in the following section, where we show soundness and adequacy for these
with respect to the operational semantics.

In order to be able to provide a correspondence between categorical and operational
semantics, we also need an interpretation of the meta-command loop. While it may not be
so clear at the present, it turns out that the appropriate one is

q
loop[p, c, q]

y
=

_

n2!
�[p, c, q]21�[p, c, q]

n
22

where �[p, c, q] = id⌃� JcK JqK JpK†, i.e., the inner part of the interpretation of the from-loop.
While it may seem like a small point, the mere existence of a categorical semantics in

inverse categories for a reversible programming language has some immediate benefits. In
particular, that a programming language is reversible can be rather complicated to show
by means of operational semantics (see, e.g., [32, Sec. 2.3]), yet it follows directly in our
categorical semantics, as all morphisms in inverse categories have a unique partial inverse.

6. Soundness and adequacy

Soundness and adequacy (see, e.g., [11]) are the two fundamental properties of operational
semantics with respect to their denotational counterparts, as soundness and completeness
are for proof systems with respect to their semantics. In brief, soundness and adequacy state
that the respective notions of convergence of the operational and denotational semantics are
in agreement.

Jif p then c1 else c2 fi qK = JqK† ◦ (Jc1K ⊕ Jc2K) ◦ JpK
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loops

12 GLÜCK AND KAARSGAARD
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For reversible loops, we use the †-trace operator to obtain the denotation

Jfrom p loop c until qK = Tr⌃⌃,⌃(id⌃ � JcK JqK JpK†)
or diagrammatically
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That this has the desired operational behavior follows from the fact that the †-trace operator
is canonically constructed in join inverse categories as

TrUX,Y (f) = f11 _
_

n2!
f21f

n
22f12 .

Recall that fij = q†
jfqi. As such, for our loop construct defined above, the f11-cases

correpond to cases where a given state bypasses the loop entirely; f21f12 (that is, for n = 0)
to cases where exactly one iteration is performed by a given state before exiting the loop;
f21f22f12 to cases where two iterations are performed before exiting; and so on. In this way,
the given trace semantics contain all successive loop unrollings, as desired. We will make
this more formal in the following section, where we show soundness and adequacy for these
with respect to the operational semantics.

In order to be able to provide a correspondence between categorical and operational
semantics, we also need an interpretation of the meta-command loop. While it may not be
so clear at the present, it turns out that the appropriate one is

q
loop[p, c, q]

y
=

_

n2!
�[p, c, q]21�[p, c, q]

n
22

where �[p, c, q] = id⌃� JcK JqK JpK†, i.e., the inner part of the interpretation of the from-loop.
While it may seem like a small point, the mere existence of a categorical semantics in

inverse categories for a reversible programming language has some immediate benefits. In
particular, that a programming language is reversible can be rather complicated to show
by means of operational semantics (see, e.g., [32, Sec. 2.3]), yet it follows directly in our
categorical semantics, as all morphisms in inverse categories have a unique partial inverse.

6. Soundness and adequacy

Soundness and adequacy (see, e.g., [11]) are the two fundamental properties of operational
semantics with respect to their denotational counterparts, as soundness and completeness
are for proof systems with respect to their semantics. In brief, soundness and adequacy state
that the respective notions of convergence of the operational and denotational semantics are
in agreement.

Jfrom q do c until pK = Tr((idΣ ⊕ JcK) ◦ JpK ◦ JqK†)
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results

Omitting 15 dense pages of math and an operational semantics, we
obtain the following correspondence theorem:
Soundness and adequacy: For any program p and state σ, JpK ◦ JσK is
total iff there exists σ′ such that σ ⊢ p ↓ σ′.

• That JpK ◦ JσK is total amounts to saying that p converges
denotationally in σ.

• That there exists σ′ such that σ ⊢ p ↓ σ′ means that p converges
operationally in σ.

Soundness and adequacy (again): The operational and denotational
notions of convergence are in agreement.
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results

Further, when some additional conditions are met, we may even
obtain full abstraction:
Full abstraction: For all commands c1 and c2, c1 ≈ c2 iff Jc1K = Jc2K.
• (−) ≈ (−) is the usual observational equivalence: c1 ≈ c2 if for
all states σ, σ ⊢ c1 ↓ σ′ iff σ ⊢ c2 ↓ σ′ (note contextual
equivalence not needed!).

• Jc1K = Jc2K is equality of interpretations as morphisms in the
category.

Full abstraction (again): Commands are operationally equivalent iff
they are equal on their interpretations.
Full abstraction (one more time): The operational and denotational
notions of command equivalence are in agreement.
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application: formal correctness of program inverter

Problem: Showing correctness of program inverter doable but
laborious with operational semantics. By induction on program c
with hypothesis JcK† = JInv(c)K.

Inv(from p loop c′ until q) = from q loop Inv(c′) until p

We can derive this as follows:

Jfrom p loop c′ until qK† = Tr((idΣ ⊕ Jc′K) ◦ JqK ◦ JpK†)†
= Tr(((idΣ ⊕ Jc′K) ◦ JqK ◦ JpK†)†)
= Tr(JpK ◦ JqK† ◦ (idΣ ⊕ Jc′K†))
= Tr((idΣ ⊕ Jc′K†) ◦ JpK ◦ JqK†)
= Tr((idΣ ⊕ JInv(c′)K) ◦ JpK ◦ JqK†)
= Jfrom q loop Inv(c′) until pK
= JInv(from p loop c′ until q)K
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other work

“That’s all well and good, but what else have you been doing
with your life?”
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Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Inversion, Fixed Points, and the
Art of Dual Wielding

Robin Kaarsgaard1,2

DIKU, Department of Computer Science, University of Copenhagen

Abstract

In category theory, the symbol † (“dagger”) is used to denote (at least) two very di↵erent operations on
morphisms: Taking their adjoint (in the context of dagger categories) and finding their least fixed point (in
the context of domain theory and categories enriched in domains). In the present paper, we wield both of
these daggers at once and consider dagger categories enriched in domains. Exploiting the view of dagger
categories as enriched in involutive monoidal categories, we develop a notion of a monotone dagger structure
as a dagger structure that is well behaved with respect to the enrichment, and show that such a structure
leads to pleasant inversion properties of the fixed points that arise as a result of this enrichment. Notably,
such a structure guarantees the existence of fixed point adjoints, which we show are intimately related to the
conjugates arising from the canonical involutive monoidal structure in the enrichment. Finally, we relate the
results to applications in the design and semantics of reversible programming languages.

Keywords: reversible computing, dagger categories, domain theory, enriched category theory

1 Introduction

Dagger categories are categories that are canonically self-dual, assigning to each
morphism an adjoint morphism in a contravariantly functorial way. In recent
years, dagger categories have been used to capture central aspects of both re-
versible [28,29,31] and quantum [2,35,13] computing. Likewise, domain theory and
categories enriched in domains (see, e.g., [3,15,16,4,7,38]) have been successful since
their inception in modelling both recursive functions and data types in programming.

In the present paper, we develop the art of dual wielding the two daggers that
arise from respectively dagger category theory and domain theory (where the very
same †-symbol is occasionally used to denote fixed points, cf. [15,16]). Concretely,
we ask how these structures must interact in order to guarantee that fixed points
are well-behaved with respect to the dagger, in the sense that each functional has
a fixed point adjoint [31]. Previously, the author and others showed that certain

1 Email: robin@di.ku.dk
2 The author would like to thank Martti Karvonen, Mathys Rennela, and Robert Glück for their useful
comments, corrections, and suggestions; and to acknowledge the support given by COST Action IC1405
Reversible computation: Extending horizons of computing.

c�2017 Published by Elsevier Science B. V.

More work on reversible recursion: Are fixed point adjoints unique
to models of classical reversible computing? (No.) Are they
canonical somehow? (Yes.) Is there a similar notion for parametrized
fixed points? (Yes.) etc.
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Ricercar: A Language for Describing
and Rewriting Reversible Circuits with Ancillae

and Its Permutation Semantics

Michael Kirkedal Thomsen1(B), Robin Kaarsgaard2, and Mathias Soeken1

1 Group of Computer Architecture, University of Bremen, Bremen, Germany
{kirkedal,msoeken}@informatik.uni-bremen.de

2 DIKU, Department of Computer Science,
University of Copenhagen, Copenhagen, Denmark

robin@di.ku.dk

Abstract. Previously, Soeken and Thomsen presented six basic
semantics-preserving rules for rewriting reversible logic circuits, defined
using the well-known diagrammatic notation of Feynman. While this
notation is both useful and intuitive for describing reversible circuits, its
shortcomings in generality complicates the specification of more sophis-
ticated and abstract rewriting rules.

In this paper, we introduce Ricercar, a general textual description lan-
guage for reversible logic circuits designed explicitly to support rewriting.
Taking the not gate and the identity gate as primitives, this language
allows circuits to be constructed using control gates, sequential compo-
sition, and ancillae, through a notion of ancilla scope. We show how the
above-mentioned rewriting rules are defined in this language, and extend
the rewriting system with five additional rules to introduce and modify
ancilla scope. This treatment of ancillae addresses the limitations of the
original rewriting system in rewriting circuits with ancillae in the general
case.

To set Ricercar on a theoretical foundation, we also define a permuta-
tion semantics over symmetric groups and show how the operations over
permutations as transposition relate to the semantics of the language.

Keywords: Reversible logic · Term rewriting · Ancillae ·
Circuit equivalence · Permutation

1 Introduction

In [14] two of the authors presented six elementary rules for rewriting reversible
circuits using mixed-polarity multiple-control Toffoli gates. Building on this,

M.K. Thomsen—This work was partly funded by the European Commission under
the 7th Framework Programme.
M.K. Thomsen—A preliminary version of Ricercar was presented as work-in-progress
at 6th Conference on Reversible Computation, 2014 .

c⃝ Springer International Publishing Switzerland 2015
J. Krivine and J.-B. Stefani (Eds.): RC 2015, LNCS 9138, pp. 200–215, 2015.
DOI: 10.1007/978-3-319-20860-2 13

A Classical Propositional Logic for Reasoning
About Reversible Logic Circuits

Holger Bock Axelsen, Robert Glück, and Robin Kaarsgaard(B)

DIKU, Department of Computer Science,
University of Copenhagen, Copenhagen, Denmark

{funkstar,glueck,robin}@di.ku.dk

Abstract. We propose a syntactic representation of reversible logic cir-
cuits in their entirety, based on Feynman’s control interpretation of Tof-
foli’s reversible gate set. A pair of interacting proof calculi for reasoning
about these circuits is presented, based on classical propositional logic
and monoidal structure, and a natural order-theoretic structure is devel-
oped, demonstrated equivalent to Boolean algebras, and extended cat-
egorically to form a sound and complete semantics for this system. We
show that all strong equivalences of reversible logic circuits are prov-
able in the system, derive an equivalent equational theory, and describe
its main applications in the verification of both reversible circuits and
template-based reversible circuit rewriting systems.

1 Introduction

Reversible computing–the study of computing models deterministic in both the
forward and backward directions–is primarily motivated by a potential to reduce
the power consumption of computing processes, but has also seen applications
in topics such as static average-case program analysis [17], unified descriptions
of parsers and pretty-printers [16], and quantum computing [6]. The potential
energy reduction was first theorized by Rolf Landauer in the early 1960s [12], and
has more recently seen experimental verification [2,14]. Reaping these potential
benefits in energy consumption, however, requires the use of a specialized gate
set guaranteeing reversibility, when applied at the level of logic circuits.

Boolean logic circuits correspond immediately to propositions in classical
propositional logic (CPL): This is done by identifying input lines with proposi-
tional atoms, and logic gates with propositional connectives, reducing the prob-
lem of reasoning about circuits to that of reasoning about arbitrary propositions
in a classical setting. However, although Toffoli’s gate set for reversible circuit
logic is equivalent to the Boolean one in terms of what can be computed [22],
it falls short of this immediate and pleasant correspondence. This article seeks

The authors acknowledge support from the Danish Council for Independent
Research | Natural Sciences under the Foundations of Reversible Computing project,
and partial support from COST Action IC1405 Reversible Computation.
Colors in electronic version.

c⃝ Springer-Verlag Berlin Heidelberg 2016
J. Väänänen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 52–67, 2016.
DOI: 10.1007/978-3-662-52921-8 4

Rewriting of reversible circuits: Two approaches to rewriting of
reversible circuits. One, a programming language with an equational
theory: Practical but possibly incomplete. The other, a formal logic:
Considerably less practical but complete.
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Reversible e↵ects as inverse arrows

Chris Heunen1, Robin Kaarsgaard2, and Martti Karvonen3

1 University of Edinburgh, chris.heunen@ed.ac.uk
2 University of Copenhagen, robin@di.ku.dk

3 University of Edinburgh, martti.karvonen@ed.ac.uk

Abstract. Reversible computing models settings in which all processes
can be reversed. Applications include low-power computing, quantum
computing, and robotics. It is unclear how to represent side-e↵ects in
this setting, because conventional methods need not respect reversibility.
We model reversible e↵ects by adapting Hughes’ arrows to dagger arrows
and inverse arrows. This captures several fundamental reversible e↵ects,
including concurrency and mutable store computations. Whereas arrows
are monoids in the category of profunctors, dagger arrows are involutive
monoids in the category of profunctors, and inverse arrows satisfy certain
additional properties. These semantics inform the design of functional
reversible programs supporting side-e↵ects.

Keywords: Reversible E↵ect; Arrow; Inverse Category; Involutive Monoid

1 Introduction

Reversible computing studies settings in which all processes can be reversed:
programs can be run backwards as well as forwards. Its history goes back at least
as far as 1961, when Landauer formulated his physical principle that logically
irreversible manipulation of information costs work. This sparked the interest in
developing reversible models of computation as a means to making them more
energy e�cient. Reversible computing has since also found applications in high-
performance computing [29], process calculi [8], probabilistic computing [32],
quantum computing [31], and robotics [30].

There are various theoretical models of reversible computations. The most
well-known ones are perhaps Bennett’s reversible Turing machines [4] and Tof-
foli’s reversible circuit model [33]. There are also various other models of re-
versible automata [26, 24] and combinator calculi [1, 20].

We are interested in models of reversibility suited to functional programming
languages. Functional languages are interesting in a reversible setting for two
reasons. First, they are easier to reason and prove properties about, which is a
boon if we want to understand the logic behind reversible programming. Second,
they are not stateful by definition, which makes it easier to reverse programs. It
is fair to say that existing reversible functional programming languages [21, 34]
still lack various desirable constructs familiar from the irreversible setting.

Irreversible functional programming languages like Haskell naturally take se-
mantics in categories. The objects interpret types, and the morphisms interpret

Effects in reversible functional programming: What is a good way to
structure reversible effects for reversible functional programming?
Monads don’t seem to work, even ones that are particularly nice.
However, Arrows can be adjusted to play well with inversion.
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RFun Revisited

Robin Kaarsgaard and Michael Kirkedal Thomsen

DIKU, Department of Computer Science, University of Copenhagen

{robin, m.kirkedal}@di.ku.dk

We describe here the steps taken in the further development of the reversible functional
programming language RFun. Originally, RFun was designed as a first-order untyped language
that could only manipulate constructor terms; later it was also extended with restricted support
for function pointers [6, 5]. We outline some of the significant updates ot the language, including
a static type system based on relevant typing, with special support for ancilla (read-only)
variables added through an unrestricted fragment. This has further resulted in a complete
makeover of the syntax, moving towards a more modern, Haskell-like language.

Background In the study of reversible computation, one investigates computational models
in which individual computation steps can be uniquely and unambiguously inverted. For pro-
gramming languages, this means languages in which programs can be run backward and get a
unique result (the exact input).

Though the field is often motivated by a desire for energy and entropy preservation though
the work of Landauer [3], we are more interested in the possibility to use reversibility as a
property that can aid in the execution of a system; an approach which can be credited to
Hu↵man [1]. In this paper we specifically consider RFun. Another notable example of a
reversible functional language is Theseus [2], which has also served as a source of inspiration
for some of the developments described here.

Ancillae Ancillae (considered ancillary variables in this context) is a term adopted from
physics to describe a state in which entropy is unchanged. Here we specifically use it for
variables for which we can guarantee that their values are unchanged over a function call. We
cannot put too little emphasis on the guarantee, because we have taken a conservative approach
and will only use it when we statically can ensure that it is upheld.

1 RFun version 2

In this section, we will describe the most interesting new additions to RFun and how they di↵er
from the original work. Rather than showing the full formalisation, we will instead argue for
their benefits to a reversible (functional) language.

Figure 1 shows an implementation of the Fibonacci function in RFun, which we will use as a
running example. Since the Fibonacci function is not injective (the first and second Fibonacci
numbers are both 1), we instead compute Fibonacci pairs, which are unique. Hence, the first
Fibonacci pair is (0, 1), the second to (1, 1), third (2, 1), and so forth.

The implementation in RFun can be found in Figure 1 and consists of a type definition Nat
and two functions plus and fib. Here, Nat defines the natural numbers as Peano numbers,
plus implements addition over the defined natural numbers, while fib is the implementation
of the Fibonacci pairfunction. Further, Figure 2 shows an implementation of the map function.

The future of Rfun: A brief vision, including ideas for a type system
supporting both ancillary and dynamic variables.
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future work

• The internal logic of extensive restriction/inverse categories.
• Decisions and reversible functional programming.
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concluding remarks

• Reversible computing – an emerging computing paradigm with
physical implications.

• Reversible programming languages as seen through the lens of
category theory.

• Focus: Understanding reversible recursion.

Thank you for attending!
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