THE LOGIC OF REVERSIBLE COMPUTING

THEORY AND PRACTICE

Robin Kaarsgaard
February 26, 2018

DIKU, Department of Computer Science, University of Copenhagen
robin@di.ku.dk
http://www.di.ku.dk/~robin

mailto:robin@di.ku.dk
http://www.di.ku.dk/~robin

A HUMAN PERSPECTIVE ON A PHD PROJECT

We tend to think of scientists as devices with the signature

Funding ® Coffee Scientist, Science ® Noise

Noise: Opinions, essays titled “XYZ considered harmful”, etc.

OVERVIEW

- Reversible computing: What, how, why?

- Reversibility from a denotational perspective
- Theme: Reversible recursion

- Models of reversible programming languages
- Other work

- Concluding remarks

REVERSIBLE COMPUTING

Reversible computing is the study of models of computation that
exhibit both forward and backward determinism.

R

. Previous . Current . Next

As a consequence, reversible computers are just as happy running
backwards as they are running forward.

Functions computed by reversible means are injective.

“I'm sorry, wait. .. you want to make computers do what?”

REVERSIBLE COMPUTING

Information is physical.

Landauer: Erasing information, no matter how you do it, costs
energy: at least kT log(2) joules per bit of information, to be precise.

Reversible computing: Computing without information erasure -
avoids Landauer limit, potential to reduce power consumption of
computing machinery.

Incidental applications: Naturally invertible problems, has even
seen applications in the programming of assembly robots(!)

A BROADER PERSPECTIVE

“So what is it that you do exactly?”

A BROADER PERSPECTIVE

b
J

PAs pA!!!!
LEVENDE BIER

“Caution!lll Live bees /| Part of a Masters thesis study”

A BROADER PERSPECTIVE

$,="";sub f{my($a,$r)=a_;@%a-$_IIprintasa;
for$c(0..$_-1){my($i,$b);for(asa){$b=1,last
if$c==%_|labs$c-$ ==$r-$i++}1$b&&f(
$A=[@%a,$cl,$r+1)&6return$A}} ([1)

(Credit: User vakorol at jagc.org)

A BROADER PERSPECTIVE

Observation Hypothesis

Hypothesis formulated as a mathematical model, predictions
extracted from this. Experiments replaced by formal proofs.

Mathematical modelling tool of choice: Category theory.

A CATEGORICAL UNDERSTANDING OF REVERSIBILITY

Starting point: Inverse categories - categories where each morphism
XL vhasa unique partial inverse Y i> X such thatfoft of=fand

flofoft =1t

Canonical example: The category PInj of sets and partial injective
functions.

Thesis (B. G. Giles): Inverse categories are semantic domains for
reversible computation.

However, partial invertibility is not enough: This is closer to
injectivity than to reversibility, and we need to be able to separate
the two.

B. G. Giles, An investigation of some theoretical aspects of reversible computing, 2014.

1

A CATEGORICAL UNDERSTANDING OF REVERSIBILITY

Idea: Exploit compositionality.

A program p is said to be reversible iff for every meaningful
subprogram p’ of p, [p’] is partially invertible.

Compositionality also seems central to the operational
understanding of reversibility: A program is reversible if it only
performs reversible primitive operations, and if these operations are
combined in a way that preserves this property.

Thesis (me): Reversible programs have compositional semantics.

REVERSIBLE RECURSION

When you're first taught about reversible programming, the
programming language Janus is usually the starting point.

Janus looks very similar to other procedural languages; it has atomic
state update commands, while loops, conditionals, etc.

However, the latter two look a little differently than usual.

Reversible while loops here perform reversible tail recursion.

T. Yokoyama, R. Gluick, A Reversible Programming Language and its Invertible Self-Interpreter, 2007

REVERSIBLE RECURSION

Then, you graduate to Rfun: A reversible functional programming
language (originally in the style of LISP/Scheme).

Save for a strange operator (duplication/equality) and some
semantic conditions on case-expressions, it is virtually

indistinguishable from ordinary functional programming languages
in that style.

...save for the ability to uncall functions (i.e., call the inverse
function).

It even supports general recursion, which works exactly as it does
irreversibly (i.e., using a call stack).

T. Yokoyama, H. B. Axelsen, R. Gluick, Towards a Reversible Functional Language, 2011

14

REVERSIBLE RECURSION

Zp[d"]

Zald]*
Tilfl2e] = f7' o= case z of Z[e,l]

Ill,e] = {l — e}
Ilet Ii = floinee] = Z[e/,let lo = f~' 11 in €]
I[rlet Iy = floine,e] = Z[e/,rlet l» = f~' 1 in €]
ZI[case | of {p; — ei}izi,e] = U, (if 05 # L then Z[e;,oi€]
else Z[e;, case p; of | — e])

where o; is the unification of [and p;

The inverse to a recursive function is a recursive function
constructed by inverting the function body, replacing the
(original) recursive call with a recursive call to the thus

constructed inverse.

T. Yokoyama, H. B. Axelsen, R. Gluick, Towards a Reversible Functional Language, 2011

REVERSIBLE RECURSION

In summary:

- Tail recursion (as in Janus) requires some surgery to work
reversibly.

- General recursion (as in Rfun) just works reversibly as usual,
and it even comes with nice inversion properties included.

What is going on here?!

“I don’t know. .. weve always done it that way.”

REVERSIBLE RECURSION

Afriend in need: Domain theory.

Join inverse categories: Inverse categories equipped with an
operator V for “gluing” parallel maps together if they are somehow
compatible.

Theorem: Every join inverse category is canonically enriched in the
category of directed-complete partial orders and continuous maps.

As a consequence, every functional ¢ : €(X,Y) — 6(X,Y) has a least
fixed pointfix ¢ : X —Y = general recursion!

X. Guo, Products, Joins, Meets, and Ranges in Restriction Categories, 2012

REVERSIBLE RECURSION

Even better: The inverse to such fixed points may be constructed
exactly as Rfun prescribes!

Theorem: Every functional ¢ : €(X,Y) — 6(X,Y) has a fixed point
adjoint @ : 6(Y,X) — 6(Y, X) satisfying (fix)T = fix .

Trick: Define B(f) = (f1)T (just like the Rfun program inverter
instructed).

19

REVERSIBLE RECURSION

A join-preserving disjointness tensor: A “sum-like” symmetric
monoidal tensor (=) @ (—) that preserves joins in each component.
Specifically has injections

xIxey vy&xev

Such a join inverse category is also a (strong) unique decomposition
category.

B. G. Giles, An investigation of some theoretical aspects of reversible computing, 2014.
E. Haghverdi, A categorical approach to linear logic, geometry of proofs and full completeness, 2000

N. Hoshino, A Representation Theorem for Unique Decomposition Categories, 2012

20

REVERSIBLE RECURSION

In particular, it has a categorical trace given by the trace formula

Tr(f) = \/ faofpofi| Vin

new
where f; = H]T ofoll,

This is a dagger trace: It satisfies Tr(ff) = Tr(f)1.

This is precisely what the reversible functional programming

language Theseus uses for reversible (tail) recursion. Can also be
used to model reversible while loops (more on this later).

E. Haghverdi, A categorical approach to linear logic, geometry of proofs and full completeness, 2000
P. Selinger, A survey of graphical languages for monoidal categories, 2011

R. P. James, A. Sabry, Theseus: A High Level Language for Reversible Computing, 2014

21

STRUCTURED REVERSIBLE FLOWCHART LANGUAGES

Put the “abstract nonsense” to work: Denotational semantics for
structured reversible flowchart languages.

Structured reversible flowchart language: A reversible imperative
language with a number of atomic steps and predicates which may
be combined using the following four flowchart structures.

T. Yokoyama, H. B. Axelsen, R. Gluck, Fundamentals of reversible flowchart languages, 2015

22

STRUCTURED REVERSIBLE FLOWCHART LANGUAGES

Example: The family RINT,. Reversible programming with k integer
variables available (assumed zero-cleared at beginning).

p:=true|false|x; =0 (Atomic predicates)
| pand p|notp (Boolean operators)
Cu=Xi+=X;j | Xi == X3 | X3 +=" (Atomic steps)
|c;c (Sequencing)
| if pthencelsecfip (Conditionals)
| from p loop cuntil p (Loops)

Other examples: Janus (without recursion), R-WHILE, R-CORE.

R. Gllick, T. Yokoyama, A Linear-Time Self-Interpreter of a Reversible Imperative Language, 2016

R. Gluick, T. Yokoyama, A Minimalist’s Reversible While Language, 2017

23

REPRESENTING PREDICATES

Immediate roadblock: How do we represent Boolean predicates
reversibly? (Like everything else, they may diverge on some inputs!)

Representing Boolean predicates on X as morphisms
X2 141

doesn't work — no coproducts, terminal object degenerate.
PRIy

for suitable distinguished object | - generally not invertible.

24

REPRESENTING PREDICATES

Better: As morphisms
XL xox

which additionally satisfy that they only tag inputs with either left or
right, but does not change them in any way.

Convention: Things sent to the left are considered true, things sent
to the right are considered false.

Morphisms very similar to these are known in the literature as
decisions. Adapting to inverse categories:

Extensive inverse category: An inverse category with a disjointness

tensor in which each map X L Y & Z has a unique decision

x 2, X @ X (axioms omitted).

R. Cockett, S. Lack, Restriction categories Ill: colimits, partial limits and extensivity, 2007

25

“[A decision is a map which] decides which branch to take,
but doesn’t yet do any actual work”

26

REPRESENTING PREDICATES

We can do Boolean operations and constants this way as well, e.g.

[tt] = I,
7 =1,
[not p] = v o [p]

(Conjunction and disjunction also possible, but too gory to show in
detail!)

Observation: The partial inverse to a predicate is precisely its
corresponding assertion.

27

SETUP

A join inverse category with a join-preserving disjointness tensor
(specifically an extensive inverse category) equipped with

- Distinguished objects | (with some properties) and X such that
states have an interpretation as total morphisms

[o] : 1 =X,
- interpretations of atomic steps as morphisms
[c] - £—=X,
- and interpretations of atomic predicates as decisions on X,
[pl:E—=XaX .

- By previous slide, we may close atomic predicates under
Boolean operations.

28

CONDITIONALS

it [c2]
= Ir] [a]'
f (2 f [[01]] —

[if p then ¢ else ¢, fi q] = [q]" o ([c1] @ [c2]) o [P]

29

= [a]'

i
=

[from g do c until p] = Tr((ids @ [c]) o [p] © [q]")

30

RESULTS

Omitting 15 dense pages of math and an operational semantics, we
obtain the following correspondence theorem:

Soundness and adequacy: For any program p and state o, [p] o [o] is
total iff there exists ¢’ such thato - p | o’.

- That [p] o [¢] is total amounts to saying that p converges
denotationally in o.

- That there exists ¢’ such that o - p | ¢/ means that p converges
operationally in o.

Soundness and adequacy (again): The operational and denotational
notions of convergence are in agreement.

31

RESULTS

Further, when some additional conditions are met, we may even
obtain full abstraction:

Full abstraction: For all commands ¢, and ¢, ¢ = ¢, iff [¢1] = [c].

- (=) = (—) is the usual observational equivalence: ¢; = ¢, if for
all states o, 0 ¢1 | o’ iff o - ¢ | o (note contextual
equivalence not needed!).

- [a1] = [c2] is equality of interpretations as morphisms in the
category.

Full abstraction (again): Commands are operationally equivalent iff
they are equal on their interpretations.

Full abstraction (one more time): The operational and denotational
notions of command equivalence are in agreement.

32

APPLICATION: FORMAL CORRECTNESS OF PROGRAM INVERTER

Problem: Showing correctness of program inverter doable but
laborious with operational semantics. By induction on program ¢
with hypothesis [c]" = [Inv(c)].

Inv(from p loop ¢’ until q) = from g loop Inv(c’) until p
We can derive this as follows:
(idz @ [c']) o [a] o [p]")!
((ids @ [c'T) o [a] o [p]")T)
=Tr([p] © [a]" o (idz @ [c]"))
= Tr((idz @ [c]") o [P] o [a])

= Tr((ids ® [Inv(c)]) o [p] o [a]")
= [from g loop Inv(c") until p]

[from p loop ¢ until qﬂT =Tr
=Tr

P

= [Inv(from p loop ¢’ until g)]

33

OTHER WORK

“That’s all well and good, but what else have you been doing
with your life?”

34

OTHER WORK

More work on reversible recursion: Are fixed point adjoints unique
to models of classical reversible computing? (No.) Are they
canonical somehow? (Yes.) Is there a similar notion for parametrized

fixed points? (Yes.) etc.

35

OTHER WORK

Rewriting of reversible circuits: Two approaches to rewriting of
reversible circuits. One, a programming language with an equational
theory: Practical but possibly incomplete. The other, a formal logic:
Considerably less practical but complete.

36

OTHER WORK

Effects in reversible functional programming: What is a good way to
structure reversible effects for reversible functional programming?
Monads don't seem to work, even ones that are particularly nice.
However, Arrows can be adjusted to play well with inversion.

37

OTHER WORK

The future of Rfun: A brief vision, including ideas for a type system
supporting both ancillary and dynamic variables.

38

FUTURE WORK

- The internal logic of extensive restriction/inverse categories.

- Decisions and reversible functional programming.

39

CONCLUDING REMARKS

- Reversible computing — an emerging computing paradigm with
physical implications.

- Reversible programming languages as seen through the lens of
category theory.

- Focus: Understanding reversible recursion.

Thank you for attending!

40

ACKNOWLEDGEMENTS

41

