
A Classical Propositional Logic for Reasoning
about Reversible Logic Circuits? ??

Holger Bock Axelsen, Robert Glück, and Robin Kaarsgaard

DIKU, Department of Computer Science, University of Copenhagen,
Copenhagen, Denmark

{funkstar,glueck,robin}@di.ku.dk

Abstract. We propose a syntactic representation of reversible logic
circuits in their entirety, based on Feynman’s control interpretation of
Toffoli’s reversible gate set. A pair of interacting proof calculi for reasoning
about these circuits is presented, based on classical propositional logic and
monoidal structure, and a natural order-theoretic structure is developed,
demonstrated equivalent to Boolean algebras, and extended categorically
to form a sound and complete semantics for this system. We show that all
strong equivalences of reversible logic circuits are provable in the system,
derive an equivalent equational theory, and describe its main applications
in the verication of both reversible circuits and template-based reversible
circuit rewriting systems.

1 Introduction

Reversible computing – the study of computing models deterministic in both the
forward and backward directions – is primarily motivated by a potential to reduce
the power consumption of computing processes, but has also seen applications
in topics such as static average-case program analysis [17], unified descriptions
of parsers and pretty-printers [16], and quantum computing [6]. The potential
energy reduction was first theorized by Rolf Landauer in the early 1960s [12], and
has more recently seen experimental verification [2, 14]. Reaping these potential
benefits in energy consumption, however, requires the use of a specialized gate
set guaranteeing reversibility, when applied at the level of logic circuits.

Boolean logic circuits correspond immediately to propositions in classical
propositional logic (CPL): This is done by identifying input lines with proposi-
tional atoms, and logic gates with propositional connectives, reducing the problem
of reasoning about circuits to that of reasoning about arbitrary propositions
in a classical setting. However, although Toffoli’s gate set for reversible circuit
logic is equivalent to the Boolean one in terms of what can be computed [22],
it falls short of this immediate and pleasant correspondence. This article seeks

? The authors acknowledge support from the Danish Council for Independent Research
| Natural Sciences under the Foundations of Reversible Computing project, and
partial support from COST Action IC1405 Reversible Computation.

?? Colors in electronic version.

2 Holger Bock Axelsen, Robert Glück, and Robin Kaarsgaard

to establish such a correspondence by proposing a standardized way of syntac-
tically representing and reasoning about reversible logic circuits. This is done
by considering a reformulation, and slight extension, of the toolset of classical
propositional logic. The main contributions of this article are the following:

– A syntactic representation of entire reversible logic circuits as propositions,
and a pair of proof calculi for reasoning about the semantics of thusly
represented reversible logic circuits, sound and complete with respect to

– a categorical/algebraic semantics based on the free strict monoidal category
over a Toffoli lattice, an order structure proven equivalent to Boolean rings,

– a proof that all strong equivalences of reversible logic circuits are provable,
and

– an illustration of how the presented logic can be used to show strong equiv-
alences of reversible circuits, and in particular to verify template-based
reversible logic circuit rewriting systems.

The complexity of reversible circuits has been increasing while at the same
time entirely new functional designs have been found (e.g. linear transforms [5],
reversible microprocessors [21]). Established tools employing conventional Boolean
logic are not geared towards the synthesis, transformation and verification of
reversible circuits. Thus, it is important to find better ways of handling this
new type of circuits, and some work has been approaching these problems from
different angles (e.g. [4, 23]). Our goal is to formally model the semantics of
reversible circuits, and in particular to capture strong equivalence of such circuits
as provable equivalence of propositions.

Overview: Sec. 2 introduces the syntax and intuitive interpretation of the
connectives, and shows how reversible logic circuits can be represented as propo-
sitions by way of a simple annotation algorithm. Sec. 3 describes the proof calculi
used to reason about circuits thus represented, and relates them to existing sys-
tems. Sec. 4 develops the concept of a Toffoli lattice as a semantics for the central
proof calculus and extends it, via a categorical view on such a structure, into
the final model category T⊗. Sec. 5 sketches the fundamental metatheorems of
soundness, completeness and circuit completeness, Sec. 6 outlines the applications
of the developed theory in reversible circuit rewriting, and Sec. 7 presents ideas
for future work, and concludes on the results presented.

2 Circuits as propositions

The correspondence between Boolean circuits and propositions, in all of its
convenience to areas such as circuit design and computational complexity, did
not happen by mistake: It is a well-known result that any Boolean function can
be computed by a circuit composed of only nand gates and constants, yet the
Boolean gate set is still, in all of its redundancies, considered the lingua franca
of logic circuit design, precisely due to this correspondence.

Propositional Reasoning about Reversible Logic Circuits 3

x1 x1

x1 x1 ⊕ 1

x1 • x1
...

xn−1 • xn−1

xn (x1 ∧ · · · ∧ xn−1)⊕ xn
(a) Boolean ring semantics.

x1 x1

x1 ¬x1

x1 • x1
...

xn−1 • xn−1

xn (x1 & · · · & xn−1) •− ¬xn
(b) Propositional semantics.

Fig. 1: Toffoli’s reversible gate set – consisting of, from top to bottom, the
identity gate, the not gate, and the generalized Toffoli gate – annotated
with their Boolean ring semantics, as well as our propositional semantics.

x1 x2 x3 x1 x2 x3
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 7→ 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

Reversible circuits are usually depicted as gate networks
where computation flows from left to right. Here, we con-
sider circuits composed of the gates in Toffoli’s reversible
gate set, shown in Fig. 1a. (This widely used gate set is
known as the Multiple-Control Toffoli (MCT) library.) We
provide a brief exposition, which the reader familiar with
reversible circuit logic can safely skip.

The only gate that warrants particular explanation is
the generalized toffoli gate, since the remaining gates
behave exactly as they do in Boolean circuit logic: This gate takes n > 1 input
lines, of which n−1 are control lines (marked with black dots), and the remaining
one is the target line (marked with ⊕). If all control lines carry a value of 1, the
value on the target line is negated – if not, the input of the target line simply
passes through unchanged. As such, the control lines control whether the not
operation should be carried out on the target line; in either case, the inputs to
all control lines are carried through to the output unchanged (see also the truth
table to the right for the generalized Toffoli gate where n = 3; x1 and x2 are
control lines, x3 is the target line). Circuits may be composed horizontally (i.e.,
by ordinary function composition) and vertically (i.e., by computation in parallel)
so long as they remain finite in size and contain neither loops, fan-in, nor fan-out.
Note also that even though the target line is placed at the bottom in Fig. 1a for
purposes of illustration, it may be placed anywhere relative to the control lines.

Contrary to Toffoli’s Boolean ring semantics for the gate set [22], our pre-
sentation embraces Feynman’s control interpretation [6] not just in the intuitive
explanation given above, but also directly in the formalism. Following Kaars-
gaard [11], this is done by replacing exclusive disjunction (here, · ⊕ ·) with the
connective · •− ·, read as control, and introducing the usual negation connective
¬· on the target. This results in the propositional semantics shown in Fig. 1b.
In this case, the semantics of the target line for the generalized toffoli gate
pleasingly reads as “x1 and · · · and xn−1 control not xn”. While Soeken &

4 Holger Bock Axelsen, Robert Glück, and Robin Kaarsgaard

x1 • x1 (x2 & x3) •− ¬x1 •
x2 • • ⇒ x2 • x2 • ⇒

x3 • x3 • x3

x1 • (x2 & x3) •− ¬x1

x2 • ((x2 & x3) •− ¬x1) •− ¬x2 • ⇒

x3 • x3

x1 • ¬((x2 & x3) •− ¬x1) ¬((x2 & x3) •− ¬x1) ~

x2 • • ((x2 & x3) •− ¬x1) •− ¬x2 7→ (((x2 & x3) •− ¬x1) •− ¬x2) ~

x3 • (((x2 & x3) •− ¬x1) •− ¬x2) •− ¬x3 (((x2 & x3) •− ¬x1) •− ¬x2) •− ¬x3

Fig. 2: An example of the annotation algorithm.

Thomsen [20] have shown (with their box rules) that control is a general concept
corresponding (roughly) to conditional execution of a subcircuit, it turns out
that, at the level of individual circuit lines, control carries the same meaning as
material bi-implication in CPL. We postpone the proof of equivalence of these
two approaches to Sec. 5.

Although the target line of the generalized toffoli gate is, in many ways, the
heart of this gate’s semantics, it only paints part of the picture. Since reversible
circuits are, by definition, required to have the same number of output lines
as input lines, parallelism plays a much larger role in reversible circuits than
in Boolean ones: To capture the semantics of reversible logic circuits in their
entirety, we need a way to capture this parallelism. We do this by introducing
yet another connective, · ~ ·, read as while, with the meaning of A ~ B as
the multiplicative ordered conjunction of propositions A and B, i.e. as string
concatenation in a free monoid. Order is important: as stated earlier, we wish the
provable equivalence relation to capture strong equivalence of reversible circuits
(reversible circuits are strongly equivalent if they compute the same function up to
function extensionality [8]), rather than equivalence up to arbitrary permutation
of output lines.

Using these two new connectives, along with the usual connectives for con-
junction (here, ·& ·) and negation, we can produce a straightforward annotation
algorithm for extracting the semantics of reversible logic circuits as a proposition
in this syntax. As also done for Boolean circuits, we identify each input line
with a (fresh) propositional atom, and then propagate the semantics (as given in
Fig. 1b) through until the entire circuit has been annotated, at which point we
terminate and return the multiplicative ordered conjunction of these propositions,
from top to bottom. An example of the annotation algorithm can be found in
Fig. 2.

As also noted by Kaarsgaard [11], the syntax of propositions for forming
reversible logic circuits using Toffoli’s gate set in Fig. 1b is more restrictive than,

Propositional Reasoning about Reversible Logic Circuits 5

e.g., CPL; that is, (ordinary) conjunctions only appear as subpropositions of
controls. Further, linear ordered conjunctions only appear as a way of “glueing”
the propositions of individual circuit lines together (see, e.g., the final step in
Fig. 2).

This structure suggests a syntactic hierarchy, which we will illustrate by
means of color: Blue propositions will be those that correspond to the semantics
of a single circuit line (perhaps of many in a circuit), red propositions correspond
to the semantics of entire circuits (or subcircuits), and yellow (or recolorable)
propositions will be those that can be either of these two. Formally, we define
such propositions to be those produced by the grammars

AB , BB , CB := AY | ¬AB | AB & BB (Blue propositions)

AY , BY , CY := a | 0 | 1 | ¬AY | AB •− BY | AY •− BB (Yellow propositions)

AR, BR, CR := AY | AR ~BR | e (Red propositions)

where a denotes any propositional atom; we will assume that there is a denu-
merable set P of these. For readability, we adopt the convention that ¬· binds
tighter than · & ·, which binds tighter than · •− ·, which finally binds tighter
than ·~ ·. Further, we will omit subscripts when the syntactic class is clear from
the context.

Starting with blue and recolorable propositions, 0 and 1 represent the false
respectively true proposition (corresponding to ancillae, lines of constant value,
in circuit terms), ¬AY the usual negation of a proposition, AB •− BY and
AY •− BB as “A control B”, and finally AB & BB as the usual (additive)
conjunction. Red propositions are interpreted as circuit structures, with AR~BR
representing the ordered (parallel) structure made up of AR and BR, and e
representing the empty structure (i.e., the empty circuit). Further, we will
denote the set of all such well-formed blue respectively red propositions by ΦB
respectively ΦR.

In the same manner, well-formed blue and red contexts (a notion of a recol-
orable context is unnecessary) are those produced by the grammars

ΓB , ∆B , ΠB := · | ΓB , AB (Blue contexts)

ΓR, ∆R, ΠR := · | ΓR, AR (Red contexts)

The distinction between the empty blue context and the empty red one is
important, since the two types of contexts will be interpreted in two different
ways; blue contexts are interpreted as an additive (blue) conjunction with 1
as unit, while red contexts are interpreted as an ordered multiplicative (red)
conjunction with e as unit. As we did for propositions, we will denote the set of
all well-formed blue respectively red contexts by Φ∗B respectively Φ∗R.

3 Proof calculi

As the syntax presented in the previous section perhaps already alludes to, we will
use not one but two proof calculi to reason about propositions thus formed. Figs. 3

6 Holger Bock Axelsen, Robert Glück, and Robin Kaarsgaard

Core rules
(BId)

Γ,A `B A
Γ `B A Γ,A `B B

(BCut)
Γ `B B

Structural rules
Γ `B B

(Wkn)
Γ,A `B B

Γ,A,A `B B
(Cnt)

Γ,A `B B

Γ,A,∆,B,Π `B C
(Exc)

Γ,B,∆,A,Π `B C

Units
(1I)

Γ `B 1 (no elimination for 1)

(no introduction for 0)
Γ `B 0

(0E)
Γ `B A

Conjunction
Γ `B A Γ `B B

(&I)
Γ `B A & B

Γ `B A & B
(&E1)

Γ `B A

Γ `B A & B
(&E2)

Γ `B B

Control
Γ,A `B B Γ,B `B A

(•−I)
Γ `B A •− B

Γ `B A •− B Γ `B B
(•−E1)

Γ `B A

Γ `B A •− B Γ `B A
(•−E2)

Γ `B B

Negation
Γ,A `B 0

(¬I)
Γ `B ¬A

Γ `B A Γ `B ¬A
(¬E)

Γ `B 0

Classical rules
Γ,A `B B Γ,¬A `B B

(Lem)
Γ `B B

Γ `B ¬¬A
(¬¬E)

Γ `B A

Fig. 3: The blue fragment of LRS~.

and 4 show the two proof calculi – the blue and the red fragment, respectively –
that make up the logic which we shall call LRS~.

There are two judgment forms, ΓB `B ϕB and ΓR `R ϕR, which differ not
only by syntax, but also by the interpretation of the context: Blue contexts are
understood to be an additive (ordinary) conjunction of its constituent propositions
(as usual) with 1 as unit, while red contexts are understood as a multiplicative
ordered conjunction of its constituent propositions with e as unit. This difference
of interpretation is reflected directly in the core rules of the calculi; while the
identity and cut rules for the red fragment use careful bookkeeping to ensure
that order and linearity are not broken, the corresponding rules in the blue
fragment display implicit use of the structural rules available in the blue fragment.
More explicitly, the blue fragment contains the usual structural rules of CPL –
weakening, contraction, and exchange – while the red fragment has none of these.

The blue fragment, largely similar to the sequent calculus of LRS [11], presents
itself as a reformulation of CPL in which control (corresponding to material
bi-implication) is taken as a fundamental connective, while implication and
disjunction are omitted. In particular, the omission of disjunction as a connective
presents a challenge for classical reasoning, as we can no longer express the
law of the excluded middle axiomatically in a way which facilitates its easy use
in derivations. To resolve this, we present the rule instead as an explicit case
analysis, corresponding to a proof tree of the form

Propositional Reasoning about Reversible Logic Circuits 7

Core rules
(RId)

A `R A
∆ `R A Γ,A,Π `R B

(RCut)
Γ,∆,Π `R B

Unit
(eI)

· `R e
∆ `R e Γ,Π `R A

(eE)
Γ,∆,Π `R A

Ordered conjunction
Γ `R A ∆ `R B

(~I)
Γ,∆ `R A~ B

∆ `R A~ B Γ,A,B,Π `R C
(~E)

Γ,∆,Π `R C

Recoloring
A `B B

(†) (Rcl)
A `R B

† Side condition: A and B are recolorable.

Fig. 4: The red fragment of LRS~.

(Lem)

Γ ` A ∨ ¬A

...

Γ,A ` B

...

Γ,¬A ` B
(∨E)

Γ ` B
in CPL, which not only presents the common use case of the law of the excluded
middle, but is also strong enough to derive the double negation elimination rule
in the straightforward way. (Proof theoretically inclined buyers beware: Though
this rule is sufficiently powerful, it threatens the subformula property [3] even in
the face of cut-elimination.) Note that as we are not aiming for minimality, both
rules are included in the blue fragment.

The red fragment offers little in terms of rules, since the only structure we
are interested in is the parallel structure of circuit lines, captured by the rules for
ordered multiplicative conjunction – essentially corresponding to concatenation
of strings (though our formulation follows the conjunctive fragment of Polakow’s
presentation [15] of the Lambek calculus), with e corresponding to the empty
string.

In our setting, by far the most interesting rule of the red fragment is the
recoloring rule, which states that any logical deduction from a single recolorable
proposition can be inserted into a structure of unit length, as long as the succedent
is likewise recolorable. Recall that the recolorable propositions are precisely those
that are well-formed as both blue and red propositions, so this (purely syntactic)
side condition is entirely reasonable. Fig. 5 gives a larger example of an LRS~

derivation, showing ¬x1 ~ x1 •− ¬x2 `R ¬x1 ~ ¬¬x1 •− ¬x2.
Finally, it is worth noting that the syntax of red propositions is not strong

enough to ensure that only reversible circuits can be represented. For example,
the red proposition x1 ~ x1 & x2 •− ¬x3 is perfectly well-formed, but does not
correspond directly to a reversible circuit. On the other hand, every reversible
circuit can adequately, and with minimal work, be represented as a red proposition,
as we saw in Sec. 2. This turned out to result in an interesting tradeoff in the
proof calculi: Naturally, it would be desirable if we could guarantee that every
red proposition corresponded precisely to a reversible circuit – however, by not
guaranteeing this property, we may consider the semantics of a single line or
group of lines in isolation, without having to take the overall structure of the
circuit into account at every step of a derivation, making for simpler overall
logic.

8 Holger Bock Axelsen, Robert Glück, and Robin Kaarsgaard

4 Semantics

Given the obvious similarities between CPL and the blue fragment of LRS~, it
would seem highly natural to adopt truth-functional semantics here as well. While
this approach certainly works when considering the blue fragment in isolation,
extending this approach to the red fragment runs into the problem of defining
a single truth value – and for good reason, since truth should be interpreted
relative to a circuit structure, taking order and resource use (i.e., viewing circuit
lines as ordered resources) into consideration.

For this reason, we will instead take the algebraic approach to semantics
by considering what we call a Toffoli lattice, an order structure with obvious
similarities to the blue fragment of LRS~. This approach has the immediate
benefit that order structures can very easily be interpreted as categories, giving
us a whole suite of tools to extend the semantics to the red fragment. We define
Toffoli lattices, and their corresponding homomorphisms, as follows:

Definition 1. A Toffoli lattice A = (A,≤,>,⊥,∧,�, ·) consists of a partially
ordered set (A,≤) furnished with the following operations and conditions:

(i) There is a greatest element > such that x ≤ > for any element x.
(ii) There is a least element ⊥ such that ⊥ ≤ x for any element x.

(iii) Given elements a, b there is an element a ∧ b such that x ≤ a ∧ b iff x ≤ a
and x ≤ b.

(iv) Given elements a, b there is an element a� b, the relative equivalence of a
and b, such that x ≤ a� b iff x ∧ a ≤ b and x ∧ b ≤ a.

(v) Given an element a, there is an element a satisfying x ≤ a iff x ∧ a ≤ ⊥,
a ∧ a ≤ ⊥, and if x ∧ a ≤ b and x ∧ a ≤ b then x ≤ b.

As is often done, we will use |A| to denote the carrier set A.

Definition 2. Let A and B be Toffoli lattices. A Toffoli lattice homomorphism
is a function h : |A| → |B| that preserves all lattice operations and constants,
i.e., h(>) = >, h(⊥) = ⊥, h(a ∧ b) = h(a) ∧ h(b), h(a� b) = h(a)� h(b), and
h(a) = h(a) for all a, b ∈ |A|.

From this definition, the truth-functional semantics appear by considering
the set {0, 1}:

Example 1. The set {0, 1} equipped with the usual partial order is a Toffoli
lattice: Assigning the usual truth table semantics to >, ⊥, ∧, and complement,
and defining

0� 0 = 1 0� 1 = 0 1� 0 = 0 1� 1 = 1

it is straightforward to verify that this yields a Toffoli lattice.

Though no explicit join operation is given, joins may be defined using meets
and complements – i.e., analogously to Boolean algebras, one can show that
x ∧ y is the least upper bound of x and y.

Propositional Reasoning about Reversible Logic Circuits 9

Lemma 1. Let h : A → B be a Toffoli lattice homomorphism. Then h is
specifically monotonic, i.e. if a ≤ b then h(a) ≤ h(b).

Like so many other structured sets, these definitions lead us, without much
trouble, to show that Toffoli lattices with homomorphisms between them form a
concrete category; a useful feature which we will use shortly to characterize the
free Toffoli lattice.

Theorem 1. The class of all Toffoli lattices with Toffoli lattice homomorphisms
between them forms a category, TL.

Careful inspection of the definition of a Toffoli lattice reveals a correspondence
with the blue fragment of LRS~ – of course, this is entirely by design, though
this correspondence is missing one part, namely the propositional atoms (recall
the assumption that these form a denumerable set P). To account for these,
we observe that Toffoli lattices may be freely constructed, and apply this free
construction to the set of propositional atoms P to form an order theoretic model
of the blue fragment.

Theorem 2. Toffoli lattices may be freely constructed, i.e., the forgetful functor
U : TL→ Sets has a left adjoint F : Sets→ TL.

Using this theorem, we take T = FP (where P is the set of propositonal
atoms) to be our model of the blue fragment. This allows us to define blue
denotation and entailment:

Definition 3. The denotation of a blue proposition ϕB ∈ ΦB, denoted [[ϕB]], is
given by the function [[·]] : Φ→ |T| defined as follows:

[[1]] = > [[a]] = a [[AB & BB]] = [[AB]] ∧ [[BB]]

[[0]] = ⊥ [[¬AB]] = [[AB]] [[AB •− BB]] = [[AB]]� [[BB]]

where a denotes any propositional atom in P . Further, the denotation of a blue
context ΓB ∈ Φ∗B is given by the overloaded function [[·]] : Φ∗B → |T| defined by

[[·]] = > [[Γ ′B , AB]] = [[Γ ′B]] ∧ [[AB]]

Definition 4 (Blue entailment). Let Γ be a well-formed blue context, and ϕ
be a well-formed blue formula. Then we define the blue entailment relation by
Γ �B ϕ iff [[Γ]] ≤ [[ϕ]] in T.

In the same manner as for any other partially ordered set, we can regard
a single Toffoli lattice A as a (skeletal preorder) category by considering each
element of |A| as an object of the category, and placing a morphism between
objects X and Y iff X ≤ Y in A. This allows us to extend our model lattice
T by categorical means to form a model of the red fragment. A key insight in
this regard is the role of monoidal categories in modelling linear logic [18]; in
particular, a strict monoidal category is sufficient to model the red fragment.
This leads to the following construction:

10 Holger Bock Axelsen, Robert Glück, and Robin Kaarsgaard

Definition 5. Let T⊗ denote the free strict monoidal category over T. That is,
T⊗ has as objects all strings X1X2 . . . Xn where all Xi are objects of T, and as
morphisms all strings of morphisms f1f2 . . . fn : X1X2 . . . Xn → Y1Y2 . . . Yn for
morphisms fi : Xi → Yi of T. It has a monoidal tensor −⊗− : T⊗ × T⊗ → T⊗
defined by concatenation; thus it is strictly associative and has a strict unit i,
denoting the empty string.

See, e.g., Joyal & Street [9, 10] for the construction of the free strict monoidal
category (or, in their nomenclature, free strict tensor category) over a given
category C; it simply amounts to be the coproduct of all functor categories of
the form Cn, where n is the discrete category of n objects. This allows us to
characterize T⊗ by means of a (Grothendieck) fibration (see, e.g., Jacobs [7])
into the discrete category ∆N which has, as objects, all natural numbers1:

Theorem 3. The functor Ψ : T⊗ → ∆N defined by mapping objects to their
lengths as strings, and morphisms to the corresponding identities is a Grothendieck
fibration and a monoidal functor. Specifically, each inverse image Ψ−1(k) for k
in (∆N)0 is a full subcategory of T⊗.

Proof (Proof sketch). Since ∆N is discrete, for any object X1X2 . . . Xn of T⊗, the
only possible morphism in ∆N of the form u : K → Ψ(X1X2 . . . Xn) is the identity
1Ψ(X1X2...Xn), which the identity morphism 1X1X2...Xn

is trivially cartesian over.
To see that Ψ is a strict monoidal functor, we note the obvious tensor product

in ∆N given by addition, i.e., by mapping objects A⊗B to their sum (as natural
numbers) A+B, and likewise morphisms 1A ⊗ 1B to 1A+B . From this, it follows
directly that Ψ(A⊗B) = Ψ(A)⊗ Ψ(B). ut

This approach is closely related to the theory of PROs, PROPs, and operads
(see, e.g., Leinster [13]) – indeed, T⊗ is a PRO – but we will avoid relying on
this theory for the sake of a more coherent presentation.

In order to define denotation and entailment in the red propositions, we
need one last lemma, stating the obvious isomorphism between Ψ−1(1) (the
subcategory of strings of objects of T of length precisely 1) and T:

Lemma 2. There exist functors I : T→ Ψ−1(1) and J : Ψ−1(1)→ T witnessing
Ψ−1(1) ∼= T.

Definition 6. The denotation of a red proposition ϕR ∈ ΦR, denoted [[ϕR]], is
given by the function [[·]] : ΦR → (T⊗)0 defined as follows:

[[e]] = i [[AR ~BR]] = [[AR]]⊗ [[BR]] [[AR]] = I([[AB]]) if AR is a recolorable.

As we did for blue propositions, we overload the denotation function to apply to
(in this case, red) contexts as well, by defining the function [[·]] : Φ∗R → (T⊗)0 as

[[·]] = i [[ΓR, AR]] = [[ΓR]]⊗ [[AR]]

1 We use the notation ∆N for the discrete category specifically to avoid confusion with
the ordinal category ω, which some authors denote N.

Propositional Reasoning about Reversible Logic Circuits 11

Definition 7 (Red entailment). Let Γ be a well-formed red context, and ϕ be
a well-formed red proposition. We define red entailment by Γ �R ϕ iff [[Γ]] ≤ [[ϕ]],
i.e. iff there exists a morphism between the objects [[Γ]] and [[ϕ]] in T⊗.

5 Metatheorems

With a semantics for both the blue and red fragments, we are ready to take on
the fundamental metatheorems of soundness and completeness. The hierarchical
structure of the proof calculi (and their semantics) gives a natural separation of
work, as the soundness and completeness of the red fragment depends directly,
via the recoloring rule, on the corresponding theorems for the blue fragment.

Theorem 4 (Soundness). If Γ `B ϕ then Γ �B ϕ; and if Γ `R ϕ then
Γ �R ϕ.

Both parts follow straightforwardly by induction; the only interesting case is
recoloring, which follows by Lemma 2 and soundness of the blue fragment. The
completeness theorems require a little more work; blue completeness relies on the
Lindenbaum-Tarski method (i.e., by taking the set of blue propositions quotiented
by blue provable equivalence, ΦB/a`B, and showing that this is isomorphic to
T), while red completeness uses the characterization of objects of T⊗ given by
Theorem 3 as an induction principle for objects of T⊗.

Theorem 5 (Completeness). If Γ �B ϕ then Γ `B ϕ; and if Γ �R ϕ then
Γ `R ϕ.

We are finally ready to tackle our previous obligation to show our propositional
semantics equivalent to Toffoli’s Boolean ring semantics. The first step is to show
that Boolean rings are equivalent to Toffoli lattices:

Theorem 6 (Universality). A is a Toffoli lattice iff it is a Boolean ring.

Proof (Proof sketch). If A is a Toffoli lattice, we define the constants and opera-
tions of a ring by

0 = ⊥ 1 = > a · b = a ∧ b a⊕ b = a� b

for all elements a and b of A. From this, it is straightforwardly shown that A
forms an abelian group under addition (with each a as its own additive inverse,
and 0 as unit), and a monoid under multiplication (with 1 as unit) which further
distributes over addition; thus it is a ring, and that it is Boolean follows directly
by the idempotence of meets.

In the other direction, suppose A is a Boolean ring; then it is also a Boolean
algebra [19], so it suffices to show that a Boolean algebra is also a Toffoli lattice.
But then we can construct relative equivalences by a � b = (a ∨ b) ∨ (b ∨ a)
for all elements a, b ∈ |A|; that A is then a Toffoli lattice follows by algebraic
manipulation. ut

12 Holger Bock Axelsen, Robert Glück, and Robin Kaarsgaard

We now extend this result to the full generality of entire reversible circuits.
Let the order of a reversible circuit denote its number of input (equivalently
output) lines; having the same order is thus a trivial requirement for two reversible
circuits to be strongly equivalent, as the functions they compute (denote this
function fC for a circuit C) will otherwise differ fundamentally by domain and
codomain. Further, we will use B = ({0, 1}, 0, 1,⊕, ·) to denote the Boolean
ring on the set {0, 1} with exclusive disjunction as addition, and conjunction as
multiplication, and Bn to be the direct product of B with itself n times. Using
Toffoli’s Boolean ring semantics (as presented in Sec. 2, Fig. 1a), we will develop
a semantic preorder on reversible circuits – but to do this, we need a way to
handle ancillae (lines of constant value) in a clean way. This is done by the ancilla
restriction on a circuit, defined as follows:

Definition 8. Let C be a reversible circuit of order n, and x ∈ |Bn|. We define
the ancilla restriction on x with respect to C to be x|C = (c1, c2, . . . , cn) where
each ci is given by

ci =

{
k if the ith input of C is an ancilla of value k
πi(x) otherwise

This allows the following preorder on the set of reversible logic circuits, and
in turn, the category induced by this preorder:

Lemma 3. The relation on reversible circuits defined by C ≤R D iff fC(x|C) ≤
fD(x|D) for all x ∈ |Bn| and circuits C,D of equal order n, where the order
relation · ≤ · denotes the usual (component-wise) ordering on Boolean vectors of
length n, is a preorder.

Definition 9. Let RC denote the category which has reversible circuits as objects,
and a single morphism between circuits C and D iff C ≤R D.

Note particularly from this definition that objects C and D of RC are iso-
morphic (i.e, C ≤R D and D ≤R C) precisely when they are strongly equivalent.
This allows us to show that all strong equivalences of reversible logic circuits are
contained in T⊗:

Theorem 7 (Embedding of RC). There exists a functor H : RC → T⊗
which constitutes an embedding of RC in T⊗, i.e., it is fully faithful; in particular
H(C) ∼= H(D) iff C ∼= D.

Proof. We define H : RC→ T⊗ on objects by taking circuits to their annotation,
as given by the annotation algorithm (see Sec. 2 and the example in Fig. 2),
and on morphisms by taking C ≤ D to the morphism H(C) ≤ H(D): That this
morphism exists in T follows by induction on the order of C (equivalently D) by
Theorem 6, since the order on the outputs is an order on Boolean ring terms,
which are equivalent to Toffoli lattice terms via

a · b = a ∧ b a⊕ b = a� b a⊕ 1 = a� > = a� ⊥ = a

Propositional Reasoning about Reversible Logic Circuits 13

which shows, by soundness, completeness and the denotation of the propositional
semantics, the exact correspondence between Toffoli’s Boolean ring semantics
and our propositional semantics (see Sec. 2, Figs. 1a and 1b). That H(C) ∼= H(D)
iff C ∼= D (equivalently, that H is fully faithful) follows likewise by induction on
the order of C (equivalently D) using Theorem 6. ut

6 Applications

Above, we have shown that the logic of LRS~ is sound and complete with respect
to a semantics that includes all strong equivalences of reversible logic circuits.
This property suggests, as an obvious first application, a general method for
proving such strong equivalences: Use the annotation algorithm of Sec. 2 to
extract propositional representations of each circuit, and then use LRS~ to show
that their propositional representations are provably equivalent.

This approach can be applied directly in the optimization of reversible circuits.
When used on very large circuits, the annotation algorithm may produce proposi-
tional representations that are infeasibly large to work with, however. Where the
approach really shines is in the development and verification of template-based
reversible circuit rewriting systems (see, e.g., [20, 1]). Template-based rewriting
works by identifying certain forms of sub-circuits, allowing these to be substituted
with equivalent ones.

•
=

•
=

Since such templates are typically quite modest in
size, one can often extract corresponding propositions
from templates with only a few steps of the annotation
algorithm. A concrete example of such a template-
based rewriting rule is Soeken & Thomsen’s rule R2,
shown on the right. Annotating these two circuits with our algorithm, the rule
states precisely the equivalences

¬x1 ~ x1 •− ¬x2 a`R ¬x1 ~ ¬¬x1 •− ¬x2 (1)

and
¬x1 ~ ¬x1 •− ¬x2 a`R ¬x1 ~ ¬x1 •− ¬x2 . (2)

which are both, indeed, provable. Note that (2) follows directly by red identity,
as the annotation the two circuits resulted in syntactically identical propositions.
One of the two derivations proving the (1) is shown in Fig. 5.

Using diagrammatic notation for such such rewriting systems is both conve-
nient and intuitive to use for humans. Although this has provided real insights
into the rewriting behavior of reversible circuits, showing completeness (with
respect to reversible circuits) for such rewriting systems has proven difficult.

Because LRS~ provides sound and complete proof calculi for reasoning about
reversible circuits, we can go the other way around and extract an equational
theory from this that is sound and complete with respect to reversible circuits.
Further, since the blue fragment of LRS~ is sound and complete with respect to
Toffoli lattices, we can instead extract an equational theory for the blue fragment
from the definition of a Toffoli lattice, using the following lemma:

14 Holger Bock Axelsen, Robert Glück, and Robin Kaarsgaard

(BId)
x1 •− ¬x2 `B x1 •− ¬x2

(Wkn)
x1 •− ¬x2,¬¬x1 `B x1 •− ¬x2

(BId)
x1 •− ¬x2,¬¬x1 `B ¬¬x1

(¬¬E)
x1 •− ¬x2,¬¬x1 `B x1D1 = (•−E2)

x1 •− ¬x2,¬¬x1 `B ¬x2

(BId)
x1 •− ¬x2 `B x1 •− ¬x2

(Wkn)
x1 •− ¬x2,¬x2 `B x1 •− ¬x2

(BId)
x1 •− ¬x2,¬x2 `B ¬x2

(•−E1)
x1 •− ¬x2,¬x2 `B x1

(Wkn)
x1 •− ¬x2,¬x2,¬x1 `B x1

(BId)
x1 •− ¬x2,¬x2,¬x1 `B ¬x1

(¬E)
x1 •− ¬x2,¬x2,¬x1 `B 0

D2 = (¬I)
x1 •− ¬x2,¬x2 `B ¬¬x1

(RId)
¬x1 `R ¬x1

D1

x1 •− ¬x2,¬¬x1 `B ¬x2

D2

x1 •− ¬x2,¬x2 `B ¬¬x1
(•−I)

x1 •− ¬x2 `B ¬¬x1 •− ¬x2
(Rcl)

x1 •− ¬x2 `R ¬¬x1 •− ¬x2D0 = (~I)
¬x1, x1 •− ¬x2 `R ¬x1 ~ ¬¬x1 •− ¬x2

(RId)
¬x1 ~ x1 •− ¬x2 `R ¬x1 ~ x1 •− ¬x2

D0

¬x1, x1 •− ¬x2 `R ¬x1 ~ ¬¬x1 •− ¬x2
(~E)

¬x1 ~ x1 •− ¬x2 `R ¬x1 ~ ¬¬x1 •− ¬x2

Fig. 5: Derivation in LRS~ for verifying the first direction of Soeken & Thomsen’s
rule R2.

Lemma 4. In any Toffoli lattice, a ≤ b iff a ∧ b = ⊥.

This lemma allows us to straightforwardly recast the definition of a Toffoli
lattice in purely equational terms (although the result is not exactly elegant).What
this does give us, is a set of equations that must hold for all Toffoli lattices, and
which any other complete equational theory must therefore be equivalent to, and
the means to show such an equivalence by converting equalities to statements
about the underlying order structure and vice versa.

Fig. 6 shows a more pleasing equational theory for the blue fragment, presented
in the syntax of LRS~ (the intrinsic properties of equality, i.e., reflexivity,
symmetry, transitivity, and congruences are not shown,) proven equivalent (and
therefore sound and complete) exactly in the way outlined above (by the power
of boring algebra). Deriving an equational theory for the red fragment is simpler,
as it is sound and complete with respect to the free monoidal part of T⊗, which is
already expressed in equational terms. As such, the equational theory for the red
fragment shown in Fig. 6 is sound and complete by definition, though congruences
applied in the red fragment are syntactically restricted by recolorability; that is,
we can only replace recolorable propositions by recolorable propositions.

The usefulness of such an equational theory is evident in that we can, e.g.,
now prove the soundness of the R2 rules directly by applying equation (B9) in
Fig. 6. Such equational theories can themselves also be used to develop new
rewriting systems for reversible circuits, in particular to suggest new templates.

Propositional Reasoning about Reversible Logic Circuits 15

ϕ~ (ψ ~ χ)
(R1)
= (ϕ~ ψ) ~ χ (ϕ & ψ) & χ

(B4)
= ϕ & (ψ & χ)

ϕ~ e
(R2)
= ϕ ϕ •− ψ (B5)

= ψ •− ϕ

e ~ ϕ
(R3)
= ϕ (ϕ •− ψ) •− χ (B6)

= ϕ •− (ψ •− χ)

ϕ & ¬(ψ & χ)
(B7)
= ¬(¬(ϕ & ¬ψ) & ¬(ϕ & ¬χ))

ϕ & 1
(B1)
= ϕ ϕ •− ψ (B8)

= ¬(ϕ & ¬ψ) & ¬(ψ & ¬ϕ)

ϕ & 0
(B2)
= 0 ¬¬ϕ (B9)

= ϕ

ϕ & ψ
(B3)
= ψ & ϕ ϕ & ¬ϕ (B10)

= 0

Fig. 6: Sound and complete equational theories for the two calculi.

7 Conclusion and future work

In this article, we have presented a syntactic representation of reversible logic
circuits centered around the control interpretation of Toffoli’s reversible gate
set, and shown, via two proof calculi of natural deduction, that a variant of
classical propositional logic extended with ordered multiplicative conjunction is
sufficient to reason about these. We have developed an algebraic and categorical
semantics, shown that the proof calculi are sound and complete with respect to
these, and that this model subsumes the established notion of strong equivalence
of reversible logic circuits. Finally, we have shown how our work can be used to
prove strong equivalences of reversible logic circuits, to verify existing systems of
reversible logic circuit rewriting, and to develop new such rewriting systems.

The approach has been successful in enabling reasoning about reversible logic
circuits, but it is not quite on even footing with the template-based approaches
to reversible circuit rewriting, as these use a graphical circuit notation which,
by definition, asserts circuit reversibility on every rewriting step. Although our
approach faithfully models circuit semantics, it is not currently clear when
looking at an arbitrary proposition whether it corresponds to a reversible circuit
or not. On the other hand, by decoupling the propositions from the graphical
representations, the current logic may allow for much shorter rewritings than if
each step must yield representations which directly translate to circuits in this
way.

References

1. M. Arabzadeh, M. Saeedi, and M. S. Zamani. Rule-based optimization of reversible
circuits. In Proc. ASP-DAC, 2010, pages 849–854, 2010.

2. A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, and E. Lutz.
Experimental verification of Landauer’s principle linking information and thermo-
dynamics. Nature, 483(7388):187–189, 2012.

3. S. R. Buss. Handbook of Proof Theory. Elsevier, 1998.
4. A. De Vos. Reversible Computing. Wiley-VCH, 2010.

16 Holger Bock Axelsen, Robert Glück, and Robin Kaarsgaard

5. A. De Vos, S. Burignat, R. Glück, T. A. Mogensen, H. B. Axelsen, M. K. Thomsen,
E. Rotenberg, and T. Yokoyama. Designing garbage-free reversible implementations
of the integer cosine transform. ACM J. Emerg. Tech. Com., 11(2):11:1–11:15,
2014.

6. R. P. Feynman. Quantum mechanical computers. Found. Phys., 16(6):507–531,
1986.

7. B. Jacobs. Categorical Logic and Type Theory. Elsevier, 1999.
8. S. P. Jordan. Strong equivalence of reversible circuits is coNP-complete. Quantum

Inf. Comput., 14(15-16):1302–1307, 2014.
9. A. Joyal and R. Street. The geometry of tensor calculus, i. Adv. Math., 88(1):55–112,

1991.
10. A. Joyal and R. Street. Braided tensor categories. Adv. Math., 102(1):20–78, 1993.
11. R. Kaarsgaard. Towards a propositional logic for reversible logic circuits. In

Proceedings of the ESSLLI 2014 Student Session, pages 33–41, 2014. Available online
at http://www.kr.tuwien.ac.at/drm/dehaan/stus2014/proceedings.pdf.

12. R. Landauer. Irreversibility and heat generation in the computing process. IBM J.
Res. Dev., 5(3):261–269, 1961.

13. T. Leinster. Higher operads, higher categories, volume 298 of London Mathematical
Society Lecture Note Series. Cambridge University Press, 2004.

14. A. O. Orlov, C. S. Lent, C. C. Thorpe, G. P. Boechler, and G. L. Snider. Exper-
imental test of Landauer’s principle at the sub-kbt level. Japan. J. Appl. Phys.,
51:06FE10, 2012.

15. J. Polakow. Ordered linear logic and applications. PhD thesis, CMU, 2001.
16. T. Rendel and K. Ostermann. Invertible syntax descriptions: Unifying parsing and

pretty printing. ACM SIGPLAN Notices, 45(11):1–12, 2010.
17. M. P. Schellekens. MOQA; unlocking the potential of compositional static average-

case analysis. J. Log. Algebr. Program., 79(1):61–83, 2010.
18. R. A. G. Seely. Linear logic, *-autonomous categories and cofree coalgebras.

Contemp. Math., 92:371–382, 1989.
19. R. Sikorski. Boolean algebras. Springer, 1969.
20. M. Soeken and M. K. Thomsen. White dots do matter: Rewriting reversible logic

circuits. In Reversible Computation, volume 7948 of LNCS, pages 196–208, 2013.
21. M. K. Thomsen, R. Glück, and H. B. Axelsen. Reversible arithmetic logic unit for

quantum arithmetic. J. Phys. A: Math. Theor., 43(38):382002, 2010.
22. T. Toffoli. Reversible computing. In Proc. ICALP, 1980, pages 632–644. Springer,

1980.
23. R. Wille and R. Drechsler. Towards a design flow for reversible logic. Springer,

2010.

